On homogenization of nonlinear hyperbolic equations

被引:4
作者
Efendiev, Y [1 ]
Popov, B [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
D O I
10.3934/cpaa.2005.4.295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study homogenization of nonlinear hyperbolic equations. The weak limit of the solutions is investigated by approximating the flux functions with piecewise linear functions. We study mostly Riemann problems for layered velocity fields as well as for the heterogeneous divergence free velocity fields.
引用
收藏
页码:295 / 309
页数:15
相关论文
共 23 条
[1]  
Bressan A., 2000, Oxford Lect. Ser. Math. Appl.
[2]  
CVETKOVIC V, 1996, P ROY SOC LOND A MAT, V452, P285
[3]  
Dafermos C., 2000, Hyperbolic Conservation Laws in Continuum Physics
[5]   SOLUTE TRANSPORT IN HETEROGENEOUS POROUS FORMATIONS [J].
DAGAN, G .
JOURNAL OF FLUID MECHANICS, 1984, 145 (AUG) :151-177
[6]   Modeling of subgrid effects in coarse-scale simulations of transport in heterogeneous porous media [J].
Efendiev, Y ;
Durlofsky, LJ ;
Lee, SH .
WATER RESOURCES RESEARCH, 2000, 36 (08) :2031-2041
[7]   A generalized convection-diffusion model for subgrid transport in porous media [J].
Efendiev, Y ;
Durlofsky, LJ .
MULTISCALE MODELING & SIMULATION, 2003, 1 (03) :504-526
[8]   CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS [J].
FANNJIANG, A ;
PAPANICOLAOU, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :333-408
[9]  
Gelhar L.W., 1993, Stochastic subsurface hydrology
[10]   The Buckley-Leverett equation with spatially stochastic flux function [J].
Holden, L .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) :1443-1454