A multiscale virtual element method for the analysis of heterogeneous media

被引:8
作者
Sreekumar, Abhilash [1 ]
Triantafyllou, Savvas P. [2 ]
Becot, Francois-Xavier [3 ]
Chevillotte, Fabien [3 ]
机构
[1] Univ Nottingham, Fac Engn, Ctr Struct Engn & Informat, Nottingham, England
[2] Natl Tech Univ Athens, Sch Civil Engn, Inst Struct Anal & Aseism Res, 9 Heroon Polytechniou,Zografou Campus, GR-15780 Athens, Greece
[3] Matelys Res Lab, 7 Rue Maraichers Bailment B, F-69120 Vaulx En Velin, France
基金
欧盟地平线“2020”;
关键词
heterogeneous domains; multiscale; virtual elements; POLYGONAL FINITE-ELEMENTS; MIMETIC DISCRETIZATIONS; TOPOLOGY OPTIMIZATION; ELLIPTIC PROBLEMS; HOMOGENIZATION; COMPOSITES; CONVERGENCE; FORMULATION; SIMULATION; PRINCIPLES;
D O I
10.1002/nme.6287
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a novel heterogeneous multiscale method for the elastic analysis of two-dimensional domains with a complex microstructure. To this end, the multiscale finite element method is revisited and originally upgraded by introducing virtual element discretizations at the microscale, hence allowing for generalized polygonal and nonconvex elements. The microscale is upscaled through the numerical evaluation of a set of multiscale basis functions. The solution of the equilibrium equations is performed at the coarse scale at a reduced computational cost. We discuss the computation of the multiscale basis functions and corresponding virtual projection operators. The performance of the method in terms of accuracy and computational efficiency is evaluated through a set of numerical examples.
引用
收藏
页码:1791 / 1821
页数:31
相关论文
共 69 条
[41]   Multiscale Methods for Composites: A Review [J].
Kanoute, P. ;
Boso, D. P. ;
Chaboche, J. L. ;
Schrefler, B. A. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2009, 16 (01) :31-75
[42]  
Kuznetsov Y, 2003, RUSS J NUMER ANAL M, V18, P261, DOI 10.1515/156939803322380846
[43]   Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements [J].
Leon, S. E. ;
Spring, D. W. ;
Paulino, G. H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 100 (08) :555-576
[44]   Mimetic finite difference method [J].
Lipnikov, Konstantin ;
Manzini, Gianmarco ;
Shashkov, Mikhail .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1163-1227
[45]   New perspectives on polygonal and polyhedral finite element methods [J].
Manzini, Gianmarco ;
Russo, Alessandro ;
Sukumar, N. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1665-1699
[46]  
Markov K., 2012, HETEROGENEOUS MEDIA
[47]   Polyhedral finite elements using harmonic basis functions [J].
Martin, Sebastian ;
Kaufmann, Peter ;
Botsch, Mario ;
Wicke, Martin ;
Gross, Markus .
COMPUTER GRAPHICS FORUM, 2008, 27 (05) :1521-1529
[48]   An engineering perspective to the virtual element method and its interplay with the standard finite element method [J].
Mengolini, Michael ;
Benedetto, Matias F. ;
Aragon, Alejandro M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 350 :995-1023
[49]   Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons [J].
Mousavi, S. E. ;
Sukumar, N. .
COMPUTATIONAL MECHANICS, 2011, 47 (05) :535-554
[50]   Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping [J].
Natarajan, Sundararajan ;
Bordas, Stephane ;
Mahapatra, D. Roy .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (01) :103-134