Statistical analysis of the Lomax-Logarithmic distribution

被引:9
作者
Al-Zahrani, Bander [1 ]
Sagor, Hanaa [1 ]
机构
[1] King Abdulaziz Univ, Dept Stat, Jeddah 21589, Saudi Arabia
关键词
maximum likelihood estimation; Logarithmic distribution; asymptotic variance-covariance matrix; Lomax distribution; lifetime distributions;
D O I
10.1080/00949655.2014.907800
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce a three-parameter lifetime distribution following the Marshall and Olkin [New method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika. 1997;84(3):641-652] approach. The proposed distribution is a compound of the Lomax and Logarithmic distributions (LLD). We provide a comprehensive study of the mathematical properties of the LLD. In particular, the density function, the shape of the hazard rate function, a general expansion for moments, the density of the rth order statistics, and the mean and median deviations of the LLD are derived and studied in detail. The maximum likelihood estimators of the three unknown parameters of LLD are obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analysed to show the potential of the new proposed distribution.
引用
收藏
页码:1883 / 1901
页数:19
相关论文
共 23 条
  • [1] Ahsanullah M., 1991, STAT NEDERLANDICA, V41, P21, DOI [10.1111/j.1467-9574.1991.tb01290.x, DOI 10.1111/J.1467-9574.1991.TB01290.X]
  • [2] Al-Zahrani B, 2012, Appl. Math. Sci, V6, P6355
  • [3] Al-Zahrani B., 2013, J QUALITY RELIABILIT
  • [4] ALICE T, 2003, FAR E J THEOR STAT, V9, P117
  • [5] Arnold B. C., 1998, SANKHYA B, V60, P228
  • [6] Arnold BC., 1983, Pareto Distributions
  • [7] Balakrishnan N., 1994, SANKHYA B, V56, P140, DOI DOI 10.1007/S11831-021-09579-6
  • [8] RESIDUAL LIFE TIME AT GREAT AGE
    BALKEMA, AA
    DEHAAN, L
    [J]. ANNALS OF PROBABILITY, 1974, 2 (05) : 792 - 804
  • [9] HEAVY-TAILED DISTRIBUTIONS - PROPERTIES AND TESTS
    BRYSON, MC
    [J]. TECHNOMETRICS, 1974, 16 (01) : 61 - 68
  • [10] Order statistics from non-identical right-truncated Lomax random variables with applications
    Childs, A
    Balakrishnan, N
    Moshref, M
    [J]. STATISTICAL PAPERS, 2001, 42 (02) : 187 - 206