Renyi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression

被引:121
作者
Wu, Yihong [1 ]
Verdu, Sergio [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Analog compression; compressed sensing; information measures; Renyi information dimension; Shannon theory; source coding; CUTOFF RATES; REGULARITY; ENTROPY; SETS;
D O I
10.1109/TIT.2010.2050803
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Shannon theory, lossless source coding deals with the optimal compression of discrete sources. Compressed sensing is a lossless coding strategy for analog sources by means of multiplication by real-valued matrices. In this paper we study almost lossless analog compression for analog memoryless sources in an information-theoretic framework, in which the compressor or decompressor is constrained by various regularity conditions, in particular linearity of the compressor and Lipschitz continuity of the decompressor. The fundamental limit is shown to the information dimension proposed by Renyi in 1959.
引用
收藏
页码:3721 / 3748
页数:28
相关论文
共 56 条
[1]  
Alligood K. T., 1996, CHAOS
[2]  
[Anonymous], 1981, Lecture Notes in Math, DOI DOI 10.1007/BFB0091916
[3]  
[Anonymous], 1992, Geometric & Functional Analysis GAFA
[4]  
[Anonymous], 2010, PROBABILITY STOCHAST
[5]  
[Anonymous], 2010, P C INF SCI SYST
[6]   HOLDER CONTINUITY FOR THE INVERSE OF MANES PROJECTION [J].
BENARTZI, A ;
EDEN, A ;
FOIAS, C ;
NICOLAENKO, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 178 (01) :22-29
[7]  
CALDERBANK R, 2009, IEEE J SEL TOPICS SI, V29
[8]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[9]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[10]   Csiszar's cutoff rates for arbitrary discrete sources [J].
Chen, PN ;
Alajaji, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) :330-338