Codimension growth of central polynomials of Lie algebras

被引:0
作者
Giambruno, Antonio [1 ]
Zaicev, Mikhail [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119992, Russia
基金
俄罗斯科学基金会;
关键词
Central polynomial; polynomial identity; codimension; exponential growth; IDENTITIES;
D O I
10.1515/forum-2019-0130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like (dim L)(n).
引用
收藏
页码:201 / 206
页数:6
相关论文
共 15 条
  • [1] [Anonymous], 1981, Encyclopedia Math. Appl.
  • [2] Graded polynomial identities of matrices
    Bahturin, Y
    Drensky, V
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 : 15 - 34
  • [3] Bahturin Yu. A., 1987, Identical relations in Lie algebras
  • [4] A CONJECTURE OF REGEV ABOUT THE CAPELLI POLYNOMIAL
    FORMANEK, E
    [J]. JOURNAL OF ALGEBRA, 1987, 109 (01) : 93 - 114
  • [5] Exponential codimension growth of PI algebras: An exact estimate
    Giambruno, A
    Zaicev, M
    [J]. ADVANCES IN MATHEMATICS, 1999, 142 (02) : 221 - 243
  • [6] On codimension growth of finitely generated associative algebras
    Giambruno, A
    Zaicev, M
    [J]. ADVANCES IN MATHEMATICS, 1998, 140 (02) : 145 - 155
  • [7] CENTRAL POLYNOMIALS OF ASSOCIATIVE ALGEBRAS AND THEIR GROWTH
    Giambruno, Antonio
    Zaicev, Mikhail
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 909 - 919
  • [8] Central polynomials and growth functions
    Giambruno, Antonio
    Zaicev, Mikhail
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) : 15 - 28
  • [9] Giambruno A, 2010, T AM MATH SOC, V362, P3107
  • [10] Gordienko AS, 2013, P AM MATH SOC, V141, P3369