SOIL BASED DESIGN OF HIGHWAY GUARDRAIL POST DEPTHS USING PENDULUM IMPACT TESTS

被引:6
作者
Ornek, Murat [1 ]
Atahan, Ali Osman [2 ]
Turedi, Yakup [1 ]
Erdem, M. Musab [1 ]
Buyuk, Murat [3 ]
机构
[1] Iskenderun Tech Univ, Fac Engn & Nat Sci, Civil Engn Dept, TR-31200 Iskenderun, Hatay, Turkey
[2] Istanbul Tech Univ, Civil Engn Fac, Civil Engn Dept, TR-34469 Istanbul, Turkey
[3] Sabanci Univ, Integrated Mfg Technol 118 Ctr, TR-34956 Istanbul, Turkey
来源
ACTA GEOTECHNICA SLOVENICA | 2019年 / 16卷 / 02期
关键词
guardrail; post; post embedment depth; soil properties; post-soil interaction; pendulum test; W-BEAM GUARDRAIL; PERFORMANCE;
D O I
10.18690/actageotechslov.16.2.77-89.2019
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Guardrails are passive road restraint systems (RRS) used at roadsides and medians to improve road safety. In the case of inadequate post embedment depth of soil driven posts may not function as intended and design cannot provide adequate safety nor security for the impacting vehicles. In general, the height of the steel guardrails varies between 1600 and 2400mm. However, the characteristics of the soil where the guardrails are driven are not taken into consideration. In other words, a constant depth ofguardrail is used regardless of the type of soil. Post embedment depths (PED) in steel guardrail systems are currently determined based on strong soil properties. The crash performance of these designs may not be appropriate for locations where soil conditions are weaker than tested conditions. In this study, a series offield impact tests were performed on soil embedded posts to determine optimum PED for three different soil conditions, namely hard, medium hard and soft soil. A pendulum device is used to perform dynamic impact tests on C type (C120x60x4), H type (H150x90x6) and S type (S100x50x4.2) posts. Seven different PED values were used for each type of soil. A total of 63 impact tests proved that increased soil stiffness resulted reduction in PED for the posts. Optimum PED values are determined based on energy absorption of posts. With the use of optimum length guardrail posts considerable amount of installation time, labor and material savings are expected.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 18 条
[1]  
AASHTO, 2014, ROADS DES GUID
[2]  
[Anonymous], 2017, Emerging Sci. J, DOI DOI 10.28991/ESJ-2017-01112
[3]   Development of European End-Treatment TWINY Using Simulation and Crash Testing [J].
Atahan, Ali O. ;
Bonin, Guido ;
Cicinnati, Luigi ;
Yasarer, Hakan I. .
JOURNAL OF TRANSPORTATION ENGINEERING, 2008, 134 (11) :467-476
[4]   Improvements to G4(RW) strong-post round-wood, W-beam guardrail system [J].
Atahan, AO ;
Cansiz, ÖF .
JOURNAL OF TRANSPORTATION ENGINEERING, 2005, 131 (01) :63-73
[5]  
Atahan AO, 2003, HEAVY VEH SYST, V10, P209
[6]   Retrofit of an existing Italian bridge rail for H4a containment level using simulation [J].
Bonin, Guido ;
Cantisani, Giuseppe ;
Ranzo, Alessandro ;
Loprencipe, Giuseppe ;
Atahan, Ali O. .
INTERNATIONAL JOURNAL OF HEAVY VEHICLE SYSTEMS, 2009, 16 (1-2) :258-270
[7]  
CEN, 2017, EN1317
[8]  
El-Maaty A. E. A., 2016, CIV ENG J, V2, P73
[9]  
Hussain S, 2017, CIV ENG J-TEHRAN, V3, P610, DOI 10.28991/cej-030988
[10]   Performance evaluation of low-tension three-strand cable median barriers [J].
Marzougui, Dhafer ;
Mohan, Pradeep ;
Kan, Cing Dao ;
Opiela, Kenneth .
TRANSPORTATION RESEARCH RECORD, 2007, (2025) :34-44