Data-driven Data Augmentation for Motor Imagery Brain-Computer Interface

被引:6
作者
Lee, Hyeon Kyu [1 ]
Lee, Ji-Hack [1 ]
Park, Jin-Oh [1 ]
Choi, Young-Seok [1 ]
机构
[1] Kwangwoon Univ, Dept Elect & Commun Engn, Seoul, South Korea
来源
35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021) | 2021年
基金
新加坡国家研究基金会;
关键词
Brain-computer interface; motor imagery; ensemble empirical mode decomposition; filter bank common spatial pattern; data augmentation; convolutional neural network; EMPIRICAL MODE DECOMPOSITION;
D O I
10.1109/ICOIN50884.2021.9333908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When utilizing deep learning (DL) for the brain-computer interface (BCI), it suffers from degradation of classification performance due to the small quantity of electroencephalography (EEG) training data. Typically, artifacts such as blinking and a falling-off in user's attention caused by a long experiment period have a great effect on the small quantity and the low quality of the EEG training data. To address this problem, in this work, we introduce a novel classification method based on data augmentation method and DL framework for motor imagery (MI) EEGs classification. The proposed framework generates input EEG images with distinct MI features from a small amount of EEG training data. Experimental results using a public BCI dataset show that the proposed method outperforms the predecessors which use a simple DL model.
引用
收藏
页码:683 / 686
页数:4
相关论文
共 10 条
  • [1] Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
  • [2] [Anonymous], 2016, TensorFlow: large-scale machine learning on heterogeneous distributed systems
  • [3] Deep learning for electroencephalogram (EEG) classification tasks: a review
    Craik, Alexander
    He, Yongtian
    Contreras-Vidal, Jose L.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
  • [4] Data augmentation for self-paced motor imagery classification with C-LSTM
    Freer, Daniel
    Yang, Guang-Zhong
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
  • [5] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [6] Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods
    Majidov, Ikhtiyor
    Whangbo, Taegkeun
    [J]. SENSORS, 2019, 19 (07):
  • [7] Optimal spatial filtering of single trial EEG during imagined hand movement
    Ramoser, H
    Müller-Gerking, J
    Pfurtscheller, G
    [J]. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (04): : 441 - 446
  • [8] Deep learning-based electroencephalography analysis: a systematic review
    Roy, Yannick
    Banville, Hubert
    Albuquerque, Isabela
    Gramfort, Alexandre
    Falk, Tiago H.
    Faubert, Jocelyn
    [J]. JOURNAL OF NEURAL ENGINEERING, 2019, 16 (05)
  • [9] ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD
    Wu, Zhaohua
    Huang, Norden E.
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (01) : 1 - 41
  • [10] A Novel Deep Learning Approach With Data Augmentation to Classify Motor Imagery Signals
    Zhang, Zhiwen
    Duan, Feng
    Sole-Casals, Jordi
    Dinares-Ferran, Josep
    Cichocki, Andrzej
    Yang, Zhenglu
    Sun, Zhe
    [J]. IEEE ACCESS, 2019, 7 : 15945 - 15954