Reachability for linear hybrid automata using iterative relaxation abstraction

被引:0
作者
Jha, Sumit K. [1 ]
Krogh, Bruce H. [2 ]
Weimer, James E. [2 ]
Clarke, Edmund M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, ECE Dept, Pittsburgh, PA 15213 USA
来源
HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS | 2007年 / 4416卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces iterative relaxation abstraction (IRA), a new method for reachability analysis of LHA that aims to improve scalability by combining the capabilities of current tools for analysis of low-dimensional LHA with the power of linear programming (LP) for large numbers of constraints and variables. IRA is inspired by the success of counterexample guided abstraction refinement (CEGAR) techniques in verification of discrete systems. On each iteration, a low-dimensional LHA called a relaxation abstraction is constructed using a subset of the continuous variables from the original LHA. Hybrid system reachability analysis then generates a regular language called the discrete path abstraction containing all possible counterexamples (paths to the bad locations) in the relaxation abstraction. If the discrete path abstraction is non-empty, a particular counterexample is selected and LP infeasibility analysis determines if the counterexample is spurious using the constraints along the path from the original high-dimensional LHA. If the counterexample is spurious, LP techniques identify an irreducible infeasible subset (IIS) of constraints from which the set of continuous variables is selected for the the construction of the next relaxation abstraction. IRA stops if the discrete path abstraction is empty or a legitimate counterexample is found. The effectiveness of the approach is illustrated with an example.
引用
收藏
页码:287 / +
页数:3
相关论文
共 24 条
[1]   Counterexample-guided predicate abstraction of hybrid systems [J].
Alur, R ;
Dang, T ;
Ivancic, F .
THEORETICAL COMPUTER SCIENCE, 2006, 354 (02) :250-271
[2]   THE ALGORITHMIC ANALYSIS OF HYBRID SYSTEMS [J].
ALUR, R ;
COURCOUBETIS, C ;
HALBWACHS, N ;
HENZINGER, TA ;
HO, PH ;
NICOLLIN, X ;
OLIVERO, A ;
SIFAKIS, J ;
YOVINE, S .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (01) :3-34
[3]  
ALUR R, 1997, P 37 IEEE C DEC CONT
[4]  
[Anonymous], LECT NOTES COMPUTER
[5]   Automatic predicate abstraction of C programs [J].
Ball, T ;
Millstein, T ;
Majumdar, R ;
Rajamani, SK .
ACM SIGPLAN NOTICES, 2001, 36 (05) :203-213
[6]  
CHAKI S, 2003, P 12 ADV RES WORK C
[7]  
CHIN J, 1994, CLIN PERINATOL, V21, P1, DOI 10.1016/0305-0548(94)90057-4
[8]   Locating minimal infeasible constraint sets in linear programs [J].
Chinneck, John W. ;
Dravnieks, Erik W. .
ORSA journal on computing, 1991, 3 (02) :157-168
[9]  
Clarke EM, 1999, MODEL CHECKING, P1
[10]  
CLARKE EM, 2000, COMPUTER AIDED VERIF, P154, DOI DOI 10.1007/10722167_15