Finite volume methods for degenerate chemotaxis model

被引:31
作者
Andreianov, Boris [2 ]
Bendahmane, Mostafa [1 ]
Saad, Mazen [3 ]
机构
[1] Univ Bordeaux 2, Inst Math Bordeaux, F-33076 Bordeaux, France
[2] Univ Franche Comte, CNRS, UMR 6623, Math Lab, F-25030 Besancon, France
[3] CNRS, UMR 6629, Lab Math Jean Leray, Ecole Cent Nantes,Dept Informat & Math, F-44321 Nantes 3, France
关键词
Degenerate; Reaction-diffusion; Chemotaxis; Finite volume scheme; KELLER-SEGEL MODEL; NONLINEAR DIFFUSION; PARABOLIC EQUATIONS; PREVENTION; SCHEME;
D O I
10.1016/j.cam.2011.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite volume method for solving the degenerate chemotaxis model is presented, along with numerical examples. This model consists of a degenerate parabolic convection-diffusion PDE for the density of the cell-population coupled to a parabolic PDE for the chemoattractant concentration. It is shown that discrete solutions exist, and the scheme converges. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4015 / 4031
页数:17
相关论文
共 25 条
[21]  
Lions J. L., 1969, QUELQUES METHODES RE
[22]  
Perthame B, 2009, T AM MATH SOC, V361, P2319
[23]  
Temam R., 1979, Navier-Stokes Equations: Theory and Numerical Analysis
[24]   Segregation and mixing in degenerate diffusion in population dynamics [J].
Witelski, TP .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (06) :695-712
[25]  
Yagi A., 1997, Math. Jap, V45, P241