Finite volume methods for degenerate chemotaxis model

被引:31
作者
Andreianov, Boris [2 ]
Bendahmane, Mostafa [1 ]
Saad, Mazen [3 ]
机构
[1] Univ Bordeaux 2, Inst Math Bordeaux, F-33076 Bordeaux, France
[2] Univ Franche Comte, CNRS, UMR 6623, Math Lab, F-25030 Besancon, France
[3] CNRS, UMR 6629, Lab Math Jean Leray, Ecole Cent Nantes,Dept Informat & Math, F-44321 Nantes 3, France
关键词
Degenerate; Reaction-diffusion; Chemotaxis; Finite volume scheme; KELLER-SEGEL MODEL; NONLINEAR DIFFUSION; PARABOLIC EQUATIONS; PREVENTION; SCHEME;
D O I
10.1016/j.cam.2011.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite volume method for solving the degenerate chemotaxis model is presented, along with numerical examples. This model consists of a degenerate parabolic convection-diffusion PDE for the density of the cell-population coupled to a parabolic PDE for the chemoattractant concentration. It is shown that discrete solutions exist, and the scheme converges. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4015 / 4031
页数:17
相关论文
共 25 条
[1]   DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) :1-67
[2]  
[Anonymous], 2003, MATH BIOL
[3]   On a two-sidedly degenerate chemotaxis model with volume-filling effect [J].
Bendahmane, Mostafa ;
Karlsen, Kenneth H. ;
Urbano, Jose Miguel .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :783-804
[4]   On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding [J].
Bendahmane, Mostafa ;
Buerger, Raimund ;
Ruiz-Baier, Ricardo ;
Urbano, Jose Miguel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (13) :1704-1737
[5]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[6]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[7]   Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis [J].
Chainais-Hillairet, C ;
Liu, JG ;
Peng, YJ .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :319-338
[8]   Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model [J].
Epshteyn, Yekaterina ;
Izmirlioglu, Ahmet .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) :211-256
[9]   NEW INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR THE KELLER-SEGEL CHEMOTAXIS MODEL [J].
Epshteyn, Yekaterina ;
Kurganov, Alexander .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :386-408
[10]   Convergence of a finite volume scheme for nonlinear degenerate parabolic equations [J].
Eymard, R ;
Gallouët, T ;
Herbin, R ;
Michel, A .
NUMERISCHE MATHEMATIK, 2002, 92 (01) :41-82