Flows on homogeneous spaces and Diophantine approximation on manifolds

被引:228
作者
Kleinbock, DY
Margulis, GA
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Yale Univ, New Haven, CT 06520 USA
关键词
D O I
10.2307/120997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain flows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprindzuk in 1964. We also prove several related hypotheses of Baker and Sprindzuk formulated in 1970s. The core of the proof is a theorem which generalizes and sharpens earlier results on nondivergence of unipotent flows on the space of lattices.
引用
收藏
页码:339 / 360
页数:22
相关论文
共 28 条
[1]  
Baker A., 1975, Transcendental number theory
[2]  
Beresnevich V, 1996, ACTA ARITH, V75, P219
[3]  
BERNIK V, 1997, VESTSI AKAD NAVU FMN, P5
[4]  
BERNIK VI, 1984, DOKL AKAD NAUK SSSR+, V277, P1036
[5]  
Cassels J.W.S., 1957, Cambridge Tracts in Mathematics and Mathematical Physics, V45
[6]  
Dani S.G., 1993, Adv. Soviet Math., V16, P91
[7]  
DANI SG, 1985, J REINE ANGEW MATH, V359, P55
[8]   ON ORBITS OF UNIPOTENT FLOWS ON HOMOGENEOUS SPACES .2. [J].
DANI, SG .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :167-182
[9]   METRIC DIOPHANTINE APPROXIMATION AND HAUSDORFF DIMENSION ON MANIFOLDS [J].
DODSON, MM ;
RYNNE, BP ;
VICKERS, JAG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 :547-558
[10]   KHINTCHINE-TYPE THEOREMS ON MANIFOLDS [J].
DODSON, MM ;
RYNNE, BP ;
VICKERS, JAG .
ACTA ARITHMETICA, 1991, 57 (02) :115-130