Novel magnetic stimulation methodology for low-current implantable medical devices

被引:14
作者
Bernardo, Rodrigo [1 ]
Rodrigues, Andre [1 ]
Soares dos Santos, Marco P. [1 ,2 ,3 ]
Carneiro, Pedro [1 ]
Lopes, Antonio [4 ,5 ]
Amaral, Joao Sequeira [4 ,5 ]
Amaral, Vitor Sequeira [4 ,5 ]
Morais, Raul [6 ,7 ]
机构
[1] Univ Aveiro, Dept Mech Engn, Aveiro, Portugal
[2] Univ Aveiro, Ctr Mech Technol & Automat TEMA, Aveiro, Portugal
[3] Associated Lab Energy Transports & Aeronaut LAETA, Porto, Portugal
[4] Univ Aveiro, Dept Phys, Aveiro, Portugal
[5] Aveiro Inst Mat, Aveiro, Portugal
[6] Univ Tras Os Montes & Alto Douro, Vila Real, Portugal
[7] Inst Syst & Comp Engn Technol & Sci INESC TEC, Porto, Portugal
关键词
Medical device; Biomagnetic device; Implantable device; Magnetic stimulation; Magnetic field; PULSED ELECTROMAGNETIC-FIELD; CELLS; EXPRESSION; CONDUCTIVITY; COLLAGEN;
D O I
10.1016/j.medengphy.2019.07.015
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent studies highlight the ability of inductive architectures to deliver therapeutic magnetic stimuli to target tissues and to be embedded into small-scale intracorporeal medical devices. However, to date, current micro-scale biomagnetic devices require very high electric current excitations (usually exceeding 1 A) to ensure the delivery of efficient magnetic flux densities. This is a critical problem as advanced implantable devices demand self-powering, stand-alone and long-term operation. This work provides, for the first time, a novel small-scale magnetic stimulation system that requires up to 50-fold lower electric current excitations than required by relevant biomagnetic technology recently proposed. Computational models were developed to analyse the magnetic stimuli distributions and densities delivered to cellular tissues during in vitro experiments, such that the feasibility of this novel stimulator can be firstly evaluated on cell culture tests. The results demonstrate that this new stimulative technology is able to deliver osteogenic stimuli (0.1-7 mT range) by current excitations in the 0.06-4.3 mA range. Moreover, it allows coil designs with heights lower than 1 mm without significant loss of magnetic stimuli capability. Finally, suitable core diameters and stimulator-stimulator distances allow to define heterogeneity or quasi-homogeneity stimuli distributions. These results support the design of high-sophisticated biomagnetic devices for a wide range of therapeutic applications. (C) 2019 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 52 条
[21]   Implantable microcoils for intracortical magnetic stimulation [J].
Lee, Seung Woo ;
Fallegger, Florian ;
Casse, Bernard D. F. ;
Fried, Shelley I. .
SCIENCE ADVANCES, 2016, 2 (12)
[22]   Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) [J].
Lefaucheur, Jean-Pascal ;
Andre-Obadia, Nathalie ;
Antal, Andrea ;
Ayache, Samar S. ;
Baeken, Chris ;
Benninger, David H. ;
Cantello, Roberto M. ;
Cincotta, Massimo ;
de Carvalho, Mamede ;
De Ridder, Dirk ;
Devanne, Herve ;
Di Lazzaro, Vincenzo ;
Filipovic, Sasa R. ;
Hummel, Friedhelm C. ;
Jaaskelainen, Satu K. ;
Kimiskidis, Vasilios K. ;
Koch, Giacomo ;
Langguth, Berthold ;
Nyffeler, Thomas ;
Oliviero, Antonio ;
Padberg, Frank ;
Poulet, Emmanuel ;
Rossi, Simone ;
Rossini, Paolo Maria ;
Rothwell, John C. ;
Schonfeldt-Lecuona, Carlos ;
Siebner, Hartwig R. ;
Slotema, Christina W. ;
Stagg, Charlotte J. ;
Valls-Sole, Josep ;
Ziemann, Ulf ;
Paulus, Walter ;
Garcia-Larrea, Luis .
CLINICAL NEUROPHYSIOLOGY, 2014, 125 (11) :2150-2206
[23]   Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice [J].
Lei, Tao ;
Liang, Zhuowen ;
Li, Feijiang ;
Tang, Chi ;
Xie, Kangning ;
Wang, Pan ;
Dong, Xu ;
Shan, Shuai ;
Jiang, Maogang ;
Xu, Qiaoling ;
Luo, Erping ;
Shen, Guanghao .
BONE, 2018, 108 :10-19
[24]   Brain Neuromodulation Techniques: A Review [J].
Lewis, Philip M. ;
Thomson, Richard H. ;
Rosenfeld, Jeffrey V. ;
Fitzgerald, Paul B. .
NEUROSCIENTIST, 2016, 22 (04) :406-421
[25]   Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production [J].
Lohmann, CH ;
Schwartz, Z ;
Liu, Y ;
Guerkov, H ;
Dean, DD ;
Simon, B ;
Boyan, BD .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2000, 18 (04) :637-646
[26]   Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells [J].
Lohmann, CH ;
Schwartz, Z ;
Liu, Y ;
Li, Z ;
Simon, BJ ;
Sylvia, VL ;
Dean, DD ;
Bonewald, LF ;
Donahue, HJ ;
Boyan, BD .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2003, 21 (02) :326-334
[27]  
Luan Song, 2014, Front Neuroeng, V7, P27, DOI 10.3389/fneng.2014.00027
[28]   Smaller magnets for smarter minds? [J].
Muggleton, Neil ;
Walsh, Vincent .
TRENDS IN COGNITIVE SCIENCES, 2012, 16 (09) :452-453
[29]   ELECTRIC-FIELDS STIMULATE DNA-SYNTHESIS OF MOUSE OSTEOBLAST-LIKE CELLS (MC3T3-E1) BY A MECHANISM INVOLVING CALCIUM-IONS [J].
OZAWA, H ;
ABE, E ;
SHIBASAKI, Y ;
FUKUHARA, T ;
SUDA, T .
JOURNAL OF CELLULAR PHYSIOLOGY, 1989, 138 (03) :477-483
[30]  
Panuccio Gabriella, 2018, Brain Neurosci Adv, V2, p2398212818776475, DOI 10.1177/2398212818776475