Solvent-free polymer electrolytes based on thermally annealed porous P(VdF-HFP)/P(EO-EQ membranes

被引:32
作者
Jeon, JD
Cho, BW
Kwak, SY
机构
[1] Seoul Natl Univ, Hyperstruct Organ Mat Res Ctr, Seoul 151744, South Korea
[2] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
[3] Korea Inst Sci & Technol, EcoNano Res Ctr, Seoul 130650, South Korea
[4] Seoul Natl Univ, Res Inst Adv Mat, Seoul 151744, South Korea
[5] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
关键词
solvent-free polymer electrolyte; porous membrane; thermal annealing; rechargeable lithium batteries;
D O I
10.1016/j.jpowsour.2004.12.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly porous membranes composed of poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] and poly(ethylene oxide-coethylene carbonate) [P(EO-EC)] were prepared by a phase inversion method. The existence of viscous P(EO-EC) in the membranes not only contributed to the flexibility and high porosity but also led to a decrease in the mechanical strength. In an attempt to enhance the mechanical properties of porous membranes, a thermal annealing technique was considered a promising approach. When the membranes were annealed at 110C for 2h in an ordinary vacuum oven, they showed a highly ordered pore structure (i.e., honeycomb-like structure) and had a smaller pore size than unannealed membranes. This contributed to enhancement of mechanical strength in the membranes. Instead of organic solvent, viscous P(EO-EC) complexed with LiCF33SO (was added to the pores of annealed and unannealed membranes. thereby producing solvent-free polymer electrolytes. Polymer electrolytes based on annealed membranes exhibited a high uptake value of the P(EO-EC)/LiCF)(SO)(3)(3) Mixture and had a maximum conductivity value of 3.5 x 10-5 S cm-1 at room temperature, which is similar to that of unannealed membrane-based polymer electrolytes. Their conductivities were observed to increase with increasing P(EO-EC) content in the membranes due to this high uptake. Considering the foregoing facts, the mechanical properties of porous membranes can be improved by the thermal annealing without risking any deterioration of porosity, uptake, and electrochemical performance. 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 31 条
[1]   Nanoparticle-dispersed PEO polymer electrolytes for Li batteries [J].
Ahn, JH ;
Wang, GX ;
Liu, HK ;
Dou, SX .
JOURNAL OF POWER SOURCES, 2003, 119 :422-426
[2]   Composite polymer electrolytes with improved lithium metal electrode interfacial properties - II. Application in rechargeable batteries [J].
Appetecchi, GB ;
Croce, F ;
Mastragostino, M ;
Scrosati, B ;
Soavi, F ;
Zanelli, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4133-4135
[3]   Composite polymer electrolytes with improved lithium metal electrode interfacial properties - I. Electrochemical properties of dry PEO-LiX systems [J].
Appetecchi, GB ;
Croce, F ;
Dautzenberg, G ;
Mastragostino, M ;
Ronci, F ;
Scrosati, B ;
Soavi, F ;
Zanelli, A ;
Alessandrini, F ;
Prosini, PP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4126-4132
[4]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[5]   THE FORMATION OF MICROPOROUS POLYVINYLIDENE DIFLUORIDE MEMBRANES BY PHASE-SEPARATION [J].
BOTTINO, A ;
CAMERARODA, G ;
CAPANNELLI, G ;
MUNARI, S .
JOURNAL OF MEMBRANE SCIENCE, 1991, 57 (01) :1-20
[6]   POLY(DIMETHYLSILOXANE)-POLY(ETHYLENE OXIDE) BASED POLYURETHANE NETWORKS USED AS ELECTROLYTES IN LITHIUM ELECTROCHEMICAL SOLID-STATE BATTERIES [J].
BOURIDAH, A ;
DALARD, F ;
DEROO, D ;
CHERADAME, H ;
LENEST, JF .
SOLID STATE IONICS, 1985, 15 (03) :233-240
[7]   Ion conduction in macroporous polyethylene film doped with electrolytes [J].
Cowie, JMG ;
Spence, GH .
SOLID STATE IONICS, 1998, 109 (1-2) :139-144
[8]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[9]   Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte [J].
Dissanayake, MAKL ;
Jayathilaka, PARD ;
Bokalawala, RSP ;
Albinsson, I ;
Mellander, BE .
JOURNAL OF POWER SOURCES, 2003, 119 :409-414
[10]   Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes [J].
Frech, R ;
Chintapalli, S .
SOLID STATE IONICS, 1996, 85 (1-4) :61-66