Employee churn prediction

被引:75
|
作者
Saradhi, V. Vijaya [1 ]
Palshikar, Girish Keshav [1 ]
机构
[1] Tata Consultancy Serv, Tata Res Dev & Design Ctr, Pune, Maharashtra, India
关键词
Customer churn; Employee churn; Predictive model; Support vector machines; Data mining; Machine learning; CUSTOMER; PROFITABILITY; SELECTION;
D O I
10.1016/j.eswa.2010.07.134
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Customer churn is a notorious problem for most industries, as loss of a customer affects revenues and brand image and acquiring new customers is difficult. Reliable predictive models for customer churn could be useful in devising customer retention plans. We survey and compare some major machine learning techniques that have been used to build predictive customer churn models. Employee churn (or attrition) closely related but not identical to customer churn is similarly painful for an organization, leading to disruptions, customer dissatisfaction and time and efforts lost in finding and training replacement. We present a case study that we carried out for building and comparing predictive employee churn models. We also propose a simple value model for employees that can be used to identify how many of the churned employees were "valuable". This work has the potential for designing better employee retention plans and improving employee satisfaction. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1999 / 2006
页数:8
相关论文
共 50 条
  • [31] Customer Churn Prediction in Telecommunication
    Yildiz, Mumin
    Albayrak, Songul
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 256 - 259
  • [32] An Analytical Implementation of CART Using RStudio for Churn Prediction
    Nijhawan, Vani Kapoor
    Madan, Mamta
    Dave, Meenu
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR COMPETITIVE STRATEGIES, 2019, 40 : 109 - 120
  • [33] Predicting the churn patterns of monetizers and non-monetizers: exploring the influence of behavioral variability in churn prediction
    Wu, Ruei-Yan
    Hu, Ya-Han
    Chou, En-Yi
    INTERNET RESEARCH, 2025,
  • [34] Intelligent Decision Forest Models for Customer Churn Prediction
    Usman-Hamza, Fatima Enehezei
    Balogun, Abdullateef Oluwagbemiga
    Capretz, Luiz Fernando
    Mojeed, Hammed Adeleye
    Mahamad, Saipunidzam
    Salihu, Shakirat Aderonke
    Akintola, Abimbola Ganiyat
    Basri, Shuib
    Amosa, Ramoni Tirimisiyu
    Salahdeen, Nasiru Kehinde
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [35] Machine Learning for Customer Churn Prediction in Retail Banking
    Dias, Joana
    Godinho, Pedro
    Torres, Pedro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT III, 2020, 12251 : 576 - 589
  • [36] A Hybrid Data Mining Method for Customer Churn Prediction
    Jamalian, Elham
    Foukerdi, Rahim
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2018, 8 (03) : 2991 - 2997
  • [37] Customer Churn Prediction Model using Data Mining techniques
    Mitkees, Ibrahim M. M.
    Badr, Sherif M.
    ElSeddawy, Ahmed Ibrahim Bahgat
    2017 13TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2017, : 262 - 268
  • [38] Giant fight: Customer churn prediction in traditional broadcast industry
    Li, Yixin
    Hou, Bingzhang
    Wu, Yue
    Zhao, Donglai
    Xie, Aoran
    Zou, Peng
    JOURNAL OF BUSINESS RESEARCH, 2021, 131 : 630 - 639
  • [39] Churn prediction via support vector classification: An empirical comparison
    Maldonado, Sebastian
    INTELLIGENT DATA ANALYSIS, 2015, 19 : S135 - S147
  • [40] A Case Study for the Churn Prediction in Turksat Internet Service Subscription
    Gok, Mehmet
    Ozyer, Tansel
    Jida, Jamal
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 1220 - 1224