ON THE ACCURACY OF INVARIANT NUMERICAL SCHEMES

被引:6
作者
Chhay, Marx [1 ]
Hamdouni, Aziz [1 ]
机构
[1] Univ La Rochelle, LEPTIAB, F-17000 La Rochelle, France
关键词
Invariant methods; Lie symmetry; order of accuracy; moving frames; parametrized scheme; geometric integration; MULTISYMPLECTIC GEOMETRY; VARIATIONAL INTEGRATORS; MOVING COFRAMES; SYMMETRY;
D O I
10.3934/cpaa.2011.10.761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a method of construction of invariant numerical schemes for partial differential equations. The resulting schemes preserve the Lie-symmetry group of the continuous equation and they are at least as accurate as the original scheme. The improvement of the numerical properties thanks to the Lie-symmetry preservation is illustrated on the example of the Burgers equation.
引用
收藏
页码:761 / 783
页数:23
相关论文
共 49 条
[1]  
[Anonymous], P I MATH NAS UKRAINE
[2]  
[Anonymous], SOLVING ORDINARY DIF
[3]  
[Anonymous], AM MATH SOC TRANSL
[4]   Symmetry-preserving difference schemes for some heat transfer equations [J].
Bakirova, MI ;
Dorodnitsyn, VA ;
Kozlov, RV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :8139-8155
[6]   Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation [J].
Budd, C ;
Dorodnitsyn, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10387-10400
[7]  
Budd C.J., 2000, HDB NUMERICAL ANAL V, VXI., P35
[8]  
Budd C.J., 1998, NUMERICAL ANAL 1997, P16
[9]   ACCURATE LONG-TERM INTEGRATION OF DYNAMICAL-SYSTEMS [J].
CALVO, MP ;
HAIRER, E .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :95-105
[10]  
Cartan E., 1935, ESPACES GEN HERMANN, V5