The exterior derivative of the Lee form of almost Hermitian manifolds

被引:0
作者
Martin Cabrera, Francisco [1 ]
机构
[1] Univ La Laguna, Dept Matemat Estadist & Invest Operat, Tenerife 38200, Spain
关键词
Almost Hermitian; G-structure; Intrinsic torsion; Minimal connection; Lee-form; Ricci curvature; CURVATURE; COMPLEX;
D O I
10.1016/j.geomphys.2019.103563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exterior derivative d theta of the Lee form theta of almost Hermitian manifolds is studied. If omega is the Kahler two -form, it is proved that the R omega-component of d theta is always zero. Expressions for the other components, in [lambda(1,1)(0)] and in of [[lambda(2,0)]] are also obtained. They are given in terms of the intrinsic torsion. Likewise, it is described some interrelations between the Lee form and U(n)-components of the Riemannian curvature tensor. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 16 条
[1]  
Abbena E., 2001, ANN SCUOLA NORM-SCI, V30, P147
[2]   Special almost Hermitian geometry [J].
Cabrera, FM .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 55 (04) :450-470
[3]  
Cabrera FM, 2006, PAC J MATH, V228, P165
[4]   Einstein metrics via intrinsic or parallel torsion [J].
Cleyton, R ;
Swann, A .
MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (03) :513-528
[5]   Classification of solvable Lie algebras [J].
de Graaf, WA .
EXPERIMENTAL MATHEMATICS, 2005, 14 (01) :15-25
[6]   ALMOST-HERMITIAN GEOMETRY [J].
FALCITELLI, M ;
FARINOLA, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (03) :259-282
[7]   THE 1-FORM OF TORSION OF A COMPACT HERMITIAN MANIFOLD [J].
GAUDUCHON, P .
MATHEMATISCHE ANNALEN, 1984, 267 (04) :495-518
[8]   Harmonic G-structures [J].
Gonzalez-Davila, J. C. ;
Cabrera, F. Martin .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :435-459
[9]  
Gray A., 1980, Annali di Matematica Pura ed Applicata, V123, P35, DOI DOI 10.1007/BF01796539
[10]  
Hasegawa K, 2005, J SYMPLECT GEOM, V3, P749