Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow

被引:242
作者
Huilin, L [1 ]
Gidaspow, D
Bouillard, J
Wentie, L
机构
[1] Harbin Inst Technol, Dept Power Engn, Harbin 150001, Peoples R China
[2] IIT, Dept Chem & Environm Engn, Chicago, IL 60616 USA
[3] INERIS, F-60550 Verneuil En Halatte, France
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
gas-solids two-phase flow; kinetic theory of granular flow; numerical simulation; hydrodynamics;
D O I
10.1016/S1385-8947(03)00062-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The dynamic behavior of gas-solids flow in a 6-m high riser was predicted using a transient two-dimensional (2D)hydrodynamic model based on the kinetic theory of granular flows. Instantaneous and local gas-particle velocity, void fraction and turbulent parameters were obtained. Predicted time-averaged particle concentrations and velocities reflect the classical core-annular flow structure in agreement with experimental measurements, in particular, with those reported by Miller and Gidaspow [AIChE J. 38 (1992) 1801]. Predicted instantaneous solids concentration frequencies compared well with the experimental data for various regions of the riser. Computed total granular temperature distributions in the riser qualitatively agree with experimental data. High thermal conductivities of fluidized powders (about 50 times that of the fluidizing gas) were estimated from the kinetic theory without adjusted parameters. Effects of initial conditions, inlet geometry. riser diameter and riser vertical inclination were assessed. Unexpected strong distortions of solids concentrations and vertical fluxes were predicted for small inclination angles of the order of 2degrees. Analysis of experimental data should, therefore, be carefully conducted to ensure that riser inclination is not too important over the length of the riser in order to eliminate potential artifacts due to this geometric parameter. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 31 条
[11]   Equation of state and radial distribution functions of FCC particles in a CFB [J].
Gidaspow, D ;
Huilin, L .
AICHE JOURNAL, 1998, 44 (02) :279-293
[12]   Collisional viscosity of FCC particles in a CFB [J].
Gidaspow, D ;
Lu, HL .
AICHE JOURNAL, 1996, 42 (09) :2503-2510
[13]  
Gidaspow D., 1994, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
[14]   PARTICLE MOTION IN A TURBULENT PIPE-FLOW [J].
GOVAN, AH ;
HEWITT, GF ;
NGAN, CF .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1989, 15 (03) :471-481
[15]   Effects of particle-phase turbulence in gas-solid flows [J].
Hrenya, CM ;
Sinclair, JL .
AICHE JOURNAL, 1997, 43 (04) :853-869
[16]   Discrete element simulations for granular material flows: Effective thermal conductivity and self-diffusivity [J].
Hunt, ML .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (13) :3059-3068
[17]   KINETIC-THEORY FOR A MONODISPERSE GAS-SOLID SUSPENSION [J].
KOCH, DL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (10) :1711-1723
[18]   THE ROLE OF PARTICLE COLLISIONS IN PNEUMATIC TRANSPORT [J].
LOUGE, MY ;
MASTORAKOS, E ;
JENKINS, JT .
JOURNAL OF FLUID MECHANICS, 1991, 231 :345-359
[19]   KINETIC THEORIES FOR GRANULAR FLOW - INELASTIC PARTICLES IN COUETTE-FLOW AND SLIGHTLY INELASTIC PARTICLES IN A GENERAL FLOWFIELD [J].
LUN, CKK ;
SAVAGE, SB ;
JEFFREY, DJ ;
CHEPURNIY, N .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :223-256
[20]   VALIDATION OF COMPUTED SOLIDS HYDRODYNAMICS AND PRESSURE OSCILLATIONS IN A BUBBLING ATMOSPHERIC FLUIDIZED-BED [J].
LYCZKOWSKI, RW ;
GAMWO, IK ;
DOBRAN, F ;
AI, YH ;
CHAO, BT ;
CHEN, MM ;
GIDASPOW, D .
POWDER TECHNOLOGY, 1993, 76 (01) :65-77