Hamiltonian Monte Carlo Probabilistic Joint Inversion of 2D (2.75D) Gravity and Magnetic Data

被引:10
作者
Zunino, Andrea [1 ]
Ghirotto, Alessandro [2 ]
Armadillo, Egidio [2 ]
Fichtner, Andreas [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Earth Sci, Zurich, Switzerland
[2] Univ Genoa, DISTAV, Appl Geophys Lab, Genoa, Italy
基金
瑞士国家科学基金会;
关键词
magnetic anomaly; gravity anomaly; joint inversion; Hamiltonian Monte Carlo; polygonal bodies; GRAVITATIONAL ATTRACTION; END CORRECTIONS; ANOMALIES; MOHO;
D O I
10.1029/2022GL099789
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Two-dimensional modeling of gravity and magnetic anomalies in terms of polygonal bodies is a popular approach to infer possible configurations of geological structures in the subsurface. Alternatively to the traditional trial-and-error manual fit of measured data, here we illustrate a probabilistic strategy to solve the inverse problem. First we derive a set of formulae for solving a 2.75-dimensional forward model, where the polygonal bodies have a given finite lateral extent, and then we devise a Hamiltonian Monte Carlo algorithm to jointly invert gravity and magnetic data for the geometry and properties of the polygonal bodies. This probabilistic approach fully addresses the nonlinearity of the forward model and provides uncertainty estimation. The result of the inversion is a collection of models which represent the posterior distribution, analysis of which provides estimates of sought properties and may reveal different scenarios.
引用
收藏
页数:12
相关论文
共 57 条
  • [1] Geophysical constraints on the Luhoi (Tanzania) geothermal conceptual model
    Armadillo, Egidio
    Rizzello, Daniele
    Pasqua, Claudio
    Pisani, Paolo
    Ghirotto, Alessandro
    Kabaka, Kato
    Mnjokava, Taramaeli
    Mwano, Jonas
    Didas, Makoye
    Tumbu, Lucas
    [J]. GEOTHERMICS, 2020, 87
  • [2] GRAVITATIONAL ATTRACTION OF A RECTANGULAR PARALLELEPIPED
    BANERJEE, B
    GUPTA, SPD
    [J]. GEOPHYSICS, 1977, 42 (05) : 1053 - 1055
  • [3] Combined Gravimetric-Seismic Crustal Model for Antarctica
    Baranov, Alexey
    Tenzer, Robert
    Bagherbandi, Mohammad
    [J]. SURVEYS IN GEOPHYSICS, 2018, 39 (01) : 23 - 56
  • [4] Betancourt M, 2018, Arxiv, DOI [arXiv:1701.02434, DOI 10.48550/ARXIV.1701.02434]
  • [5] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [6] A generalized multibody model for inversion of magnetic anomalies
    Bhattacharyya, B.K.
    [J]. Geophysics, 1980, 45 (02) : 255 - 270
  • [7] Blakely R. J., 1996, Potential theory in gravity and magnetic applications, DOI [10.1017/CBO9780511549816, DOI 10.1017/CBO9780511549816]
  • [8] Bonvalot S., 2012, World Gravity Map
  • [9] CALCULATION OF GRAVITY AND MAGNETIC-ANOMALIES OF FINITE-LENGTH RIGHT POLYGONAL PRISMS
    CADY, JW
    [J]. GEOPHYSICS, 1980, 45 (10) : 1507 - 1512
  • [10] Campbell D.L., 1983, 83154 US GEOL SURV, DOI [10.3133/ofr83154, DOI 10.3133/OFR83154]