An Overview of Myocardial Infarction Registries and Results from the Hungarian Myocardial Infarction Registry

被引:4
作者
Piros, Peter [1 ]
Fleiner, Rita [1 ]
Ferenci, Tamas [1 ]
Andreka, Peter [2 ]
Fujita, Hamido [3 ]
Ofner, Peter [1 ]
Kovacs, Levente [1 ]
Janosi, Andras [2 ]
机构
[1] Obuda Univ, John von Neumann Fac Informat, Budapest, Hungary
[2] Gottsegen Gyorgy Hungarian Inst Cardiol, Budapest, Hungary
[3] Iwate Prefectural Univ, Fac Software & Informat Sci, Takizawa, Iwate, Japan
来源
NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES | 2017年 / 297卷
关键词
ACS; Infarction registry; Myocardial infarction; Hungarian Myocardial Infarction Registry; DISEASE; PROGNOSIS; TRENDS; CARE;
D O I
10.3233/978-1-61499-800-6-312
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, several databases store information about patients and diseases, but only a few exists that focus directly on myocardial events and treatments. This paper is divided into two parts. In the first part, we list and summarize the ongoing European myocardial projects (Myocardial Ischaemia National Audit Project (MINAP) in England, Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies (SWEDEHEART) in Sweden, National Registry of Acute Myocardial Infarction in Switzerland (AMIS Plus) in Switzerland). Where possible, we discuss the validity and accuracy of the stored data. In the second part, we introduce the history and legal environment of the Hungarian Myocardial Infarction Registry (HUMIR), and some research results that were achieved with the help of the information in the Hungarian registry.
引用
收藏
页码:312 / 320
页数:9
相关论文
共 30 条
[1]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[2]   Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Adam, Muhammad ;
Tan, Jen Hong ;
Chua, Chua Kuang .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :62-71
[3]   Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 405 :81-90
[4]   Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Adam, Muhammad ;
Lih, Oh Shu ;
Sudarshan, Vidya K. ;
Hong, Tan Jen ;
Koh, Joel E. W. ;
Hagiwara, Yuki ;
Chua, Chua K. ;
Poo, Chua Kok ;
San, Tan Ru .
INFORMATION SCIENCES, 2017, 377 :17-29
[5]   Patient care of patients with myocardial infarction in Hungary. Analysis of National Myocardial Infarction Registry data collecting in 2015 [J].
Andras, Janosi ;
Peter, Ofner ;
Fahmi, Al-Maktari ;
Erik, Hajko ;
Krisztina, Hati ;
Zoltan, Jarai ;
Mihaly, Jozan-Jilling ;
Gabor, Kiss Robert ;
Gerda, Loczi ;
Geza, Lupkovics ;
Zoltan, Ruzsa ;
Erika, Schmidt ;
Gabor, Veress ;
Tibor, Zsifkov ;
Bela, Merkely .
ORVOSI HETILAP, 2017, 158 (03) :90-93
[6]  
[Anonymous], 1971, ISCH HEART DIS REG
[7]  
Beaglehole R, 1999, J CARDIOVASC RISK, V6, P63
[8]  
Erne Paul, 2015, AMIS PLUS SPONS PART
[9]   Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index [J].
Fujita, Hamida ;
Acharya, U. Rajendra ;
Sudarshan, Vidya K. ;
Ghista, Dhanjoo N. ;
Sree, S. Vinitha ;
Eugene, Lim Wei Jie ;
Koh, Joel E. W. .
APPLIED SOFT COMPUTING, 2016, 43 :510-519
[10]  
Gyarfas I., 1975, AZ ACUT MYOCARDIALIS