Exact solutions of the Schrodinger equation with the position-dependent mass for a hard-core potential

被引:80
作者
Dong, SH [1 ]
Lozada-Cassou, M [1 ]
机构
[1] Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico
关键词
exact solutions; position-dependent mass; hard-core potential; quantum dots;
D O I
10.1016/j.physleta.2005.02.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact solutions of two-dimensional Schrodinger equation with the position-dependent mass for a hard-core potential are obtained. The eigenvalues related to the position-dependent masses mu(1) and mu(2), the potential well depth V-0 and the effective range r(0) can be calculated by the boundary condition. We generalize this quantum system to three-dimensional case. The special cases for l = 0, 1 are studied in detail. For l = 0 and c = 0, we find that the energy levels will increase with the parameters mu(2), V-0 and r(0) if mu(1) > mu(2). 2005 Published by Elsevier B.V.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 34 条
[11]   Exact solutions of effective-mass Schrodinger equations [J].
Gönül, B ;
Özer, O ;
Gönül, B ;
Üzgün, F .
MODERN PHYSICS LETTERS A, 2002, 17 (37) :2453-2465
[12]   Supersymmetric approach to exactly solvable systems with position-dependent effective masses [J].
Gönül, B ;
Gönül, B ;
Tutcu, D ;
Özer, O .
MODERN PHYSICS LETTERS A, 2002, 17 (31) :2057-2066
[13]   THEORY OF ELECTRONIC STATES AND TRANSPORT IN GRADED MIXED SEMICONDUCTORS [J].
GORA, T ;
WILLIAMS, F .
PHYSICAL REVIEW, 1969, 177 (03) :1179-&
[14]  
Gradshteyn I. S., 1994, TABLES INTEGRALS SER
[15]  
Harrison P, 2000, QUANTUM WELLS WIRES
[16]  
Landau L.D., 1977, QUANTUM MECH NONRELA
[17]   Quantum features of semiconductor quantum dots [J].
Lozada-Cassou, M ;
Dong, SH ;
Yu, J .
PHYSICS LETTERS A, 2004, 331 (1-2) :45-52
[18]   LEVINSON THEOREM IN A SEMICONDUCTOR QUANTUM-WELL [J].
MILANOVIC, V ;
IKONIC, Z ;
TJAPKIN, D .
PHYSICS LETTERS A, 1992, 170 (02) :127-129
[19]   Generation of isospectral combinations of the potential and the effective-mass variations by supersymmetric quantum mechanics [J].
Milanovic, V ;
Ikonic, Z .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (40) :7001-7015
[20]   ESTABLISHMENT OF AN EFFECTIVE-MASS HAMILTONIAN FOR ABRUPT HETEROJUNCTIONS [J].
MORROW, RA .
PHYSICAL REVIEW B, 1987, 35 (15) :8074-8079