Exact solutions of the Schrodinger equation with the position-dependent mass for a hard-core potential

被引:80
作者
Dong, SH [1 ]
Lozada-Cassou, M [1 ]
机构
[1] Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico
关键词
exact solutions; position-dependent mass; hard-core potential; quantum dots;
D O I
10.1016/j.physleta.2005.02.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact solutions of two-dimensional Schrodinger equation with the position-dependent mass for a hard-core potential are obtained. The eigenvalues related to the position-dependent masses mu(1) and mu(2), the potential well depth V-0 and the effective range r(0) can be calculated by the boundary condition. We generalize this quantum system to three-dimensional case. The special cases for l = 0, 1 are studied in detail. For l = 0 and c = 0, we find that the energy levels will increase with the parameters mu(2), V-0 and r(0) if mu(1) > mu(2). 2005 Published by Elsevier B.V.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 34 条
  • [11] Exact solutions of effective-mass Schrodinger equations
    Gönül, B
    Özer, O
    Gönül, B
    Üzgün, F
    [J]. MODERN PHYSICS LETTERS A, 2002, 17 (37) : 2453 - 2465
  • [12] Supersymmetric approach to exactly solvable systems with position-dependent effective masses
    Gönül, B
    Gönül, B
    Tutcu, D
    Özer, O
    [J]. MODERN PHYSICS LETTERS A, 2002, 17 (31) : 2057 - 2066
  • [13] THEORY OF ELECTRONIC STATES AND TRANSPORT IN GRADED MIXED SEMICONDUCTORS
    GORA, T
    WILLIAMS, F
    [J]. PHYSICAL REVIEW, 1969, 177 (03): : 1179 - &
  • [14] Gradshteyn I. S., 1994, TABLES INTEGRALS SER
  • [15] Harrison P, 2000, QUANTUM WELLS WIRES
  • [16] Landau L.D., 1977, QUANTUM MECH NONRELA
  • [17] Quantum features of semiconductor quantum dots
    Lozada-Cassou, M
    Dong, SH
    Yu, J
    [J]. PHYSICS LETTERS A, 2004, 331 (1-2) : 45 - 52
  • [18] LEVINSON THEOREM IN A SEMICONDUCTOR QUANTUM-WELL
    MILANOVIC, V
    IKONIC, Z
    TJAPKIN, D
    [J]. PHYSICS LETTERS A, 1992, 170 (02) : 127 - 129
  • [19] Generation of isospectral combinations of the potential and the effective-mass variations by supersymmetric quantum mechanics
    Milanovic, V
    Ikonic, Z
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (40): : 7001 - 7015
  • [20] ESTABLISHMENT OF AN EFFECTIVE-MASS HAMILTONIAN FOR ABRUPT HETEROJUNCTIONS
    MORROW, RA
    [J]. PHYSICAL REVIEW B, 1987, 35 (15) : 8074 - 8079