共 46 条
- [41] (kappa, mu, upsilon = const.)-contact metric manifolds with xi(I-M)=0 BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2014, 55 (01): : 43 - 58
- [42] Existence and Uniqueness for the Non-Compact Yamabe Problem of Negative Curvature Type ANALYSIS IN THEORY AND APPLICATIONS, 2024, 40 (01): : 57 - 91
- [43] Generalized Toponogov comparison theorem for manifolds of roughly non-negative radial curvature INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2010, 13 (3B): : 835 - 841
- [44] The curvature tensor of (κ,μ,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\mu ,\nu )$$\end{document}-contact metric manifolds Monatshefte für Mathematik, 2015, 177 (3) : 331 - 344
- [45] On non-gradient (m,ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,\rho )$$\end{document}-quasi-Einstein contact metric manifolds Journal of Geometry, 2021, 112 (1)
- [46] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\mu ,\upsilon =const.)$$\end{document}-contact metric manifolds with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi (I_{M})=0$$\end{document} Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 43 - 58