Local stability of discrete-time TS fuzzy systems

被引:8
作者
Lendek, Zsofia [1 ]
Lauber, Jimmy [2 ]
机构
[1] Tech Univ Cluj Napoca, Dept Automat, Memorandumului 28, Cluj Napoca 400114, Romania
[2] Univ Valenciennes & Hainaut Cambresis, LAMIH, F-59313 Le Mt Houy 9, Valenciennes, France
关键词
discrete-time fuzzy system; local stability; Lyapunov stability; NONQUADRATIC STABILIZATION CONDITIONS; TAKAGI-SUGENOS FORM; LYAPUNOV FUNCTIONS; NONLINEAR-SYSTEMS; DESIGN; MODELS;
D O I
10.1016/j.ifacol.2016.07.081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers local stability analysis of discrete-time Takagi-Sugeno fuzzy systems, for which classically in the TS literature only global stability is considered. Using a common quadratic and nonquadratic Lyapunov function, respectively, LMI conditions are developed to establish local stability of an equilibrium point. Act estimate of the region of attraction of this point is also determined. The developed conditions are illustrated on a numerical example. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 24 条
[1]  
[Anonymous], P IEEE INT C FUZZ SY
[2]   Homogeneous Polynomially Nonquadratic Stabilization of Discrete-Time Takagi-Sugeno Systems via Nonparallel Distributed Compensation Law [J].
Ding, Baocang .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) :994-1000
[3]   Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form [J].
Ding, BC ;
Sun, HX ;
Yang, P .
AUTOMATICA, 2006, 42 (03) :503-508
[4]   Dynamic output feedback H∞ control synthesis for discrete-time T-S fuzzy systems via switching fuzzy controllers [J].
Dong, Jiuxiang ;
Yang, Guang-Hong .
FUZZY SETS AND SYSTEMS, 2009, 160 (04) :482-499
[5]   Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions [J].
Feng, G .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) :22-28
[6]   LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form [J].
Guerra, TM ;
Vermeiren, L .
AUTOMATICA, 2004, 40 (05) :823-829
[7]   Piecewise quadratic stability of fuzzy systems [J].
Johansson, M ;
Rantzer, A ;
Årzén, KE .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) :713-722
[8]   Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach [J].
Kruszewski, A. ;
Wang, R. ;
Guerra, T. M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (02) :606-611
[9]   Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems [J].
Lee, Dong Hwan ;
Park, Jin Bae ;
Joo, Young Hoon .
AUTOMATICA, 2011, 47 (03) :534-538
[10]   Periodic Lyapunov functions for periodic TS systems [J].
Lendek, Zs. ;
Lauber, J. ;
Guerra, T. M. .
SYSTEMS & CONTROL LETTERS, 2013, 62 (04) :303-310