Irreversible Degradation Behaviors of an Electrolyte-gated Polyaniline (PANI) Nanowire Field-effect Transistor

被引:8
作者
Lee, Seung-Yong [1 ]
Lee, Sang-Kwon [1 ]
Lim, Hyuneui [2 ]
Choi, Gyoung-Rin [2 ]
机构
[1] Chonbuk Natl Univ, SPRC, Dept Semicond Sci & Technol, Jeonju 561756, South Korea
[2] KIMM, Nanomech Syst Res Div, Taejon 305343, South Korea
关键词
Polyaniline; Nanowire; Degradation; Coulombic repulsion; CONDUCTING POLYMER; POLYPYRROLE; SENSOR; COMPOSITE; ARRAYS;
D O I
10.3938/jkps.57.1416
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We studied the degradation properties of a conducing polyaniline (PANI) nanowire field-effect transistor (FET) operating in a three-probe FET structure in an electrolyte solution on a SiO(2)/Si substrate. We observed that the current-voltage characteristics of an electrolyte-gated PANI nanowire FET swept for 13 cycles in a cyclic potential mode exhibited clear irreversible degradation, as shown by the drain current-gate voltage curves. We propose that the degradation of the PANI nanowire FET, which indicates a conductance loss and gain in the oxidation and reduction modes, respectively, is attributable to the intensity of Coulombic repulsion in the cycle mode.
引用
收藏
页码:1416 / 1420
页数:5
相关论文
共 50 条
  • [1] Electronic transport characteristics of electrolyte-gated conducting polyaniline nanowire field-effect transistors
    Lee, Seung-Yong
    Choi, Gyoung-Rin
    Lim, Hyuneui
    Lee, Kyung-Mi
    Lee, Sang-Kwon
    APPLIED PHYSICS LETTERS, 2009, 95 (01)
  • [2] Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications
    Shkodra, Bajramshahe
    Petrelli, Mattia
    Angeli, Martina Aurora Costa
    Garoli, Denis
    Nakatsuka, Nako
    Lugli, Paolo
    Petti, Luisa
    APPLIED PHYSICS REVIEWS, 2021, 8 (04)
  • [3] A Sensitivity-Enhanced Electrolyte-Gated Graphene Field-Effect Transistor Biosensor by Acoustic Tweezers
    Chen, Yan
    Liu, Wenpeng
    Zhang, Hao
    Zhang, Daihua
    Guo, Xiaoliang
    MICROMACHINES, 2021, 12 (10)
  • [4] Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH Protein Adsorption
    Ohno, Yasuhide
    Maehashi, Kenzo
    Yamashiro, Yusuke
    Matsumoto, Kazuhiko
    NANO LETTERS, 2009, 9 (09) : 3318 - 3322
  • [5] Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors
    Stoesser, Anna
    von Seggern, Falk
    Purohit, Suneeti
    Nasr, Babak
    Kruk, Robert
    Dehm, Simone
    Wang, Di
    Hahn, Horst
    Dasgupta, Subho
    NANOTECHNOLOGY, 2016, 27 (41)
  • [6] Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor
    Lago, Nicolo
    Galli, Alessandra
    Tonello, Sarah
    Ruiz-Molina, Sara
    Marino, Saralea
    Casalini, Stefano
    Buonomo, Marco
    Pisu, Simona
    Mas-Torrent, Marta
    Giorgi, Giada
    Pedersen, Morten Gram
    Bortolozzi, Mario
    Cester, Andrea
    ADVANCED ELECTRONIC MATERIALS, 2025, 11 (02):
  • [7] Distinctive Behavior of Field-Effect and Redox Electrolyte-Gated Organic Transistors
    Coutinho, Douglas Jose
    Feitosa, Bianca de Andrade
    Barbosa, Henrique Frulan de Paula i
    Colucci, Renan
    Torres, Bruno Bassi Millan
    Faria, Gregorio Couto
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (50) : 24443 - 24451
  • [8] Nanowire field-effect transistor
    Wernersson, Lars-Erik
    Lind, Erik
    Samuelson, Lars
    Lowgren, Truls
    Ohlsson, Jonas
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B): : 2629 - 2631
  • [9] Piezopotential Gated Nanowire-Nanotube Hybrid Field-Effect Transistor
    Liu, Weihua
    Lee, Minbaek
    Ding, Lei
    Liu, Jie
    Wang, Zhong Lin
    NANO LETTERS, 2010, 10 (08) : 3084 - 3089
  • [10] Vertically Oriented Zinc Oxide Nanorod-Based Electrolyte-Gated Field-Effect Transistor for High-Performance Glucose Sensing
    Khan, Marya
    Nagal, Vandana
    Masrat, Sakeena
    Tuba, Talia
    Alam, Shamshad
    Bhat, Kiesar Sideeq
    Wahid, Iram
    Ahmad, Rafiq
    ANALYTICAL CHEMISTRY, 2022, 94 (25) : 8867 - 8873