Closed-form formula for conditional moments of generalized nonlinear drift CEV process

被引:10
作者
Sutthimat, Phiraphat [1 ]
Mekchay, Khamron [1 ]
Rujivan, Sanae [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
[2] Walailak Univ, Ctr Excellence Data Sci Hlth Study, Sch Sci, Div Math & Stat, Nakhon Si Thammarat 80161, Thailand
关键词
Nonlinear drift CEV process; ECIR Process; 3; 2-SVM; Conditional moment; Closed-form formula; MODEL;
D O I
10.1016/j.amc.2022.127213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studied a generalized case of the constant elasticity of variance diffusion (CEV) process whereas the drift term is substantially nonlinear in the short rate. Well-known instances deduced by this process are the extended Cox-Ingersoll-Ross (ECIR) process and the extended inverse Feller (EIF) process or 3/2-stochastic volatility model (SVM). We found particular sufficient conditions of existence and uniqueness of a positive pathwise strong solution for time-dependent parameter functions, and obtained closed-form formulas for conditional moments based on Feynman-Kac theorem. The accuracy and validity of the formulas were further investigated based on Monte Carlo simulations. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 29 条
  • [1] A parametric nonlinear model of term structure dynamics
    Ahn, DH
    Gao, B
    [J]. REVIEW OF FINANCIAL STUDIES, 1999, 12 (04) : 721 - 762
  • [2] Alfonsi A, 2015, B & SS BOCC SPR SER, V6, DOI 10.1007/978-3-319-05221-2
  • [3] The sub-fractional CEV model
    Araneda, Axel A.
    Bertschinger, Nils
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 573
  • [4] PRICING OF COMMODITY CONTRACTS
    BLACK, F
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (1-2) : 167 - 179
  • [5] Boonklurb R, 2018, J NUMER IND APPL MAT, V12, P1
  • [6] Pricing variance swaps under hybrid CEV and stochastic volatility
    Cao, Jiling
    Kim, Jeong-Hoon
    Zhang, Wenjun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [7] AN EMPIRICAL-COMPARISON OF ALTERNATIVE MODELS OF THE SHORT-TERM INTEREST-RATE
    CHAN, KC
    KAROLYI, GA
    LONGSTAFF, FA
    SANDERS, AB
    [J]. JOURNAL OF FINANCE, 1992, 47 (03) : 1209 - 1227
  • [8] Is the short rate drift actually nonlinear?
    Chapman, DA
    Pearson, ND
    [J]. JOURNAL OF FINANCE, 2000, 55 (01) : 355 - 388
  • [9] Chumpong K., 2021, SONGKLANAKARIN J SCI, V43, P1
  • [10] Chumpong K., 2020, SONGKLA J SCI TECHNO, V42, P836, DOI DOI 10.14456/sjst-psu.2020.107