A New SCTN Digital Low Power Spiking Neuron

被引:6
作者
Bensimon, Moshe [1 ]
Greenberg, Shlomo [1 ,2 ]
Ben-Shimol, Yehuda [1 ]
Haiut, Moshe [3 ]
机构
[1] Ben Gurion Univ Negev, Sch Comp & Elect Engn, IL-84105 Beer Sheva, Israel
[2] Shamoon Coll Engn, Elect & Elect Dept, IL-8410802 Beer Sheva, Israel
[3] DSP Grp Inc, IL-4672505 Herzliyya, Israel
关键词
Neurons; Hardware; Biological system modeling; Membrane potentials; Delays; Adders; Synapses; Spiking neuron; digital neuron; LIF model; low power; STDP learning rules; neuromorphic; Izhikevich behaviors; STDP;
D O I
10.1109/TCSII.2021.3065827
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents an innovative reconfigurable parametric model of a digital Spiking Neuron (SN). The proposed neuron model is based on the classical Leaky Integrate and Fire (LIF) model with some modifications, allowing neuron configuration using seven different leak modes and three activation functions with a dynamic threshold setting. A complementary online learning model based on adjustable Spike Timing Dependent Plasticity (STDP) learning rules has been developed as part of the proposed neuron architecture. Efficient hardware implementation of the proposed SN significantly reduces area and power costs. The proposed SN model consumes less than 10nW and requires only 700 ASIC 2-input NAND gates for implementation using ten neuron-inputs. Simulation results show an average power consumption of about 3.5 mW/cm(2). Simulation of the proposed digital SN demonstrates its ability to replicate accurately the behavior of a biological neuron model.
引用
收藏
页码:2937 / 2941
页数:5
相关论文
共 22 条
[1]   Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence [J].
Abderrahmane, Nassim ;
Lemaire, Edgar ;
Miramond, Benoit .
NEURAL NETWORKS, 2020, 121 :366-386
[2]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[3]  
[Anonymous], neuromorphic computing and neural networks in hardware
[4]   Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses [J].
Bakiri, Mohammed ;
Guyeux, Christophe ;
Couchot, Jean-Francois ;
Oudjida, Abdelkrim Kamel .
COMPUTER SCIENCE REVIEW, 2018, 27 :135-153
[5]   ON THE DYNAMICS OF SMALL CONTINUOUS-TIME RECURRENT NEURAL NETWORKS [J].
BEER, RD .
ADAPTIVE BEHAVIOR, 1995, 3 (04) :469-509
[6]  
Cassidy A, 2011, IEEE INT SYMP CIRC S, P673
[7]  
Cassidy AS, 2013, IEEE IJCNN
[8]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[9]  
Dytckov S., 2016, ARXIV160202009
[10]   A 0.086-mm2 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS [J].
Frenkel, Charlotte ;
Lefebvre, Martin ;
Legat, Jean-Didier ;
Bol, David .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (01) :145-158