Gelfand models for diagram algebras

被引:4
|
作者
Halverson, Tom [1 ]
Reeks, Mike [2 ]
机构
[1] Macalester Coll, Dept Math, St Paul, MN 55105 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
Gelfand model; Multiplicity-free representation; Symmetric group; Partition algebra; Brauer algebra; Temperley-Lieb algebra; Motzkin algebra; Rook monoid; TEMPERLEY-LIEB; BRAUER; REPRESENTATIONS; CHARACTERS;
D O I
10.1007/s10801-014-0534-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Gelfand model for a semisimple algebra over an algebraically closed field is a linear representation that contains each irreducible representation of with multiplicity exactly one. We give a method of constructing these models that works uniformly for a large class of semisimple, combinatorial diagram algebras including the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid algebras. In each case, the model representation is given by diagrams acting via "signed conjugation" on the linear span of their horizontally symmetric diagrams. This representation is a generalization of the Saxl model for the symmetric group. Our method is to use the Jones basic construction to lift the Saxl model from the symmetric group to each diagram algebra. In the case of the planar diagram algebras, our construction exactly produces the irreducible representations of the algebra.
引用
收藏
页码:229 / 255
页数:27
相关论文
共 50 条
  • [31] BERNSTEIN-GELFAND-GELFAND RECIPROCITY AND INDECOMPOSABLE PROJECTIVE MODULES FOR CLASSICAL ALGEBRAIC SUPERGROUPS
    Gruson, Caroline
    Serganova, Vera
    MOSCOW MATHEMATICAL JOURNAL, 2013, 13 (02) : 281 - 313
  • [32] The Efficient Computation of Fourier Transforms on Semisimple Algebras
    Maslen, David
    Rockmore, Daniel N.
    Wolff, Sarah
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (05) : 1377 - 1400
  • [33] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [34] A GELFAND MODEL FOR WREATH PRODUCTS
    Adin, Ron M.
    Postnikov, Alexander
    Roichman, Yuval
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 381 - 402
  • [35] CENTRALIZER ALGEBRAS AND DEGENERATE AFFINE HECKE ALGEBRAS
    Ellers, Harald
    Murray, John
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 1074 - 1094
  • [36] Multi-Matrix Models and Noncommutative Frobenius Algebras Obtained from Symmetric Groups and Brauer Algebras
    Yusuke Kimura
    Communications in Mathematical Physics, 2015, 337 : 1 - 40
  • [37] On the symmetric Gelfand pair, diag
    Tout, Omar
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [38] A Gelfand model for wreath products
    Ron M. Adin
    Alexander Postnikov
    Yuval Roichman
    Israel Journal of Mathematics, 2010, 179 : 381 - 402
  • [39] On strongly harmonic and Gelfand modules
    Medina-Barcenas, Mauricio
    Morales-Callejas, Lorena
    Shaid Sandoval-Miranda, Martha Lizbeth
    Zaldivar-Corichi, Angel
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 1985 - 2013
  • [40] Folded quantum integrable models and deformed W-algebras
    Frenkel, Edward
    Hernandez, David
    Reshetikhin, Nicolai
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (04)