Gelfand models for diagram algebras

被引:4
|
作者
Halverson, Tom [1 ]
Reeks, Mike [2 ]
机构
[1] Macalester Coll, Dept Math, St Paul, MN 55105 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
Gelfand model; Multiplicity-free representation; Symmetric group; Partition algebra; Brauer algebra; Temperley-Lieb algebra; Motzkin algebra; Rook monoid; TEMPERLEY-LIEB; BRAUER; REPRESENTATIONS; CHARACTERS;
D O I
10.1007/s10801-014-0534-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Gelfand model for a semisimple algebra over an algebraically closed field is a linear representation that contains each irreducible representation of with multiplicity exactly one. We give a method of constructing these models that works uniformly for a large class of semisimple, combinatorial diagram algebras including the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid algebras. In each case, the model representation is given by diagrams acting via "signed conjugation" on the linear span of their horizontally symmetric diagrams. This representation is a generalization of the Saxl model for the symmetric group. Our method is to use the Jones basic construction to lift the Saxl model from the symmetric group to each diagram algebra. In the case of the planar diagram algebras, our construction exactly produces the irreducible representations of the algebra.
引用
收藏
页码:229 / 255
页数:27
相关论文
共 50 条
  • [1] Gelfand models for diagram algebras
    Tom Halverson
    Mike Reeks
    Journal of Algebraic Combinatorics, 2015, 41 : 229 - 255
  • [2] Combinatorial Gelfand Models for Semisimple Diagram Algebras
    Mazorchuk, Volodymyr
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (02) : 385 - 396
  • [3] Combinatorial Gelfand Models for Semisimple Diagram Algebras
    Volodymyr Mazorchuk
    Milan Journal of Mathematics, 2013, 81 : 385 - 396
  • [4] COMBINATORIAL GELFAND MODELS FOR SOME SEMIGROUPS AND q-ROOK MONOID ALGEBRAS
    Kudryavtseva, Ganna
    Mazorchuk, Volodymyr
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 707 - 718
  • [5] Combinatorial Gelfand models
    Adin, Ron M.
    Postnikov, Alexander
    Roichman, Yuval
    JOURNAL OF ALGEBRA, 2008, 320 (03) : 1311 - 1325
  • [6] Handlebody diagram algebras
    Tubbenhauer, Daniel
    Vaz, Pedro
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (03) : 845 - 896
  • [7] TANGLE AND BRAUER DIAGRAM ALGEBRAS OF TYPE Dn
    Cohen, Arjeh M.
    Gijsbers, Die A. H.
    Wales, David B.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (04) : 447 - 483
  • [8] On endomorphism algebras of Gelfand-Graev representations II
    Li, Tzu-Jan
    Shotton, Jack
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (06) : 2876 - 2890
  • [9] Modular Lie algebras and the Gelfand-Kirillov conjecture
    Premet, Alexander
    INVENTIONES MATHEMATICAE, 2010, 181 (02) : 395 - 420
  • [10] Idempotents and homology of diagram algebras
    Boyde, Guy
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 2173 - 2207