Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements

被引:0
作者
Clearman, Samuel [1 ]
Hyatt, Matthew [2 ]
Shelton, Brittany [3 ]
Skandera, Mark [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Pace Univ, Dept Math, Pleasantville, NY USA
[3] Albright Coll, Dept Math, Reading, PA 19612 USA
关键词
Hecke algebra; character; trace; Kazhdan-Lusztig basis; chromatic quasisymmetric function; planar network; P-tableau; pattern avoidance; IMMANANTS; MATRICES; REPRESENTATIONS; CHARACTERS; HN(Q);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For irreducible characters {chi(lambda)(q) vertical bar lambda proves n}, induced sign characters {epsilon(lambda)(q) vertical bar lambda proves n}, and induced trivial characters {eta(lambda)(q) vertical bar lambda proves n} of the Hecke algebra H-n(q), and Kazhdan-Lusztig basis elements C-w' (q) with w avoiding the patterns 3412 and 4231, we combinatorially interpret the polynomials chi(lambda)(q)(q(l(w)/2)C(w)'(q)), epsilon(lambda)(q)(q(l(w)/2)C(w)' (q)), and eta(lambda)(q) (q(l(w)/2)C(w)' (q)). This provides a new algebraic interpretation of chromatic quasisymmetric functions of Shareshian and Wachs, and a new combinatorial interpretation of special cases of results of Haiman. We prove similar results for other H-n(q)-traces, and confirm a formula conjectured by Haiman.
引用
收藏
页数:56
相关论文
共 34 条