Using Summary Statistics to Model Multiplicative Combinations of Initially Analyzed Phenotypes With a Flexible Choice of Covariates

被引:1
作者
Wolf, Jack M. [1 ]
Westra, Jason [2 ]
Tintle, Nathan [2 ,3 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN USA
[2] Dordt Univ, Dept Math Comp Sci & Stat, Sioux Ctr, IA 51250 USA
[3] Univ Illinois, Dept Populat Hlth Nursing Sci, Coll Nursing, Chicago, IL 60607 USA
关键词
summary statistics; covariate adjustment; linear models; phenotype; multiplication; GENOME-WIDE ASSOCIATION; TRAITS; METAANALYSIS; BIOBANK;
D O I
10.3389/fgene.2021.745901
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
While the promise of electronic medical record and biobank data is large, major questions remain about patient privacy, computational hurdles, and data access. One promising area of recent development is pre-computing non-individually identifiable summary statistics to be made publicly available for exploration and downstream analysis. In this manuscript we demonstrate how to utilize pre-computed linear association statistics between individual genetic variants and phenotypes to infer genetic relationships between products of phenotypes (e.g., ratios; logical combinations of binary phenotypes using "and" and "or") with customized covariate choices. We propose a method to approximate covariate adjusted linear models for products and logical combinations of phenotypes using only pre-computed summary statistics. We evaluate our method's accuracy through several simulation studies and an application modeling ratios of fatty acids using data from the Framingham Heart Study. These studies show consistent ability to recapitulate analysis results performed on individual level data including maintenance of the Type I error rate, power, and effect size estimates. An implementation of this proposed method is available in the publicly available R package pcsstools.</p>
引用
收藏
页数:12
相关论文
共 29 条
  • [1] Partial correlation and conditional correlation as measures of conditional independence
    Baba, K
    Shibata, R
    Sibuya, M
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (04) : 657 - 664
  • [2] The UK Biobank resource with deep phenotyping and genomic data
    Bycroft, Clare
    Freeman, Colin
    Petkova, Desislava
    Band, Gavin
    Elliott, Lloyd T.
    Sharp, Kevin
    Motyer, Allan
    Vukcevic, Damjan
    Delaneau, Olivier
    O'Connell, Jared
    Cortes, Adrian
    Welsh, Samantha
    Young, Alan
    Effingham, Mark
    McVean, Gil
    Leslie, Stephen
    Allen, Naomi
    Donnelly, Peter
    Marchini, Jonathan
    [J]. NATURE, 2018, 562 (7726) : 203 - +
  • [3] An atlas of genetic associations in UK Biobank
    Canela-Xandri, Oriol
    Rawlik, Konrad
    Tenesa, Albert
    [J]. NATURE GENETICS, 2018, 50 (11) : 1593 - +
  • [4] Cox N, 2018, NATURE, V562, P194, DOI 10.1038/d41586-018-06948-3
  • [5] Phenome-wide association studies across large population cohorts support drug target validation
    Diogo, Dorothee
    Tian, Chao
    Franklin, Christopher S.
    Alanne-Kinnunen, Mervi
    March, Michael
    Spencer, Chris C. A.
    Vangjeli, Ciara
    Weale, Michael E.
    Mattsson, Hannele
    Kilpelainen, Elina
    Sleiman, Patrick M. A.
    Reilly, Dermot F.
    McElwee, Joshua
    Maranville, Joseph C.
    Chatterjee, Arnaub K.
    Bhandari, Aman
    Nguyen, Khanh-Dung H.
    Estrada, Karol
    Reeve, Mary-Pat
    Hutz, Janna
    Bing, Nan
    John, Sally
    Macarthur, Daniel G.
    Salomaa, Veikko
    Ripatti, Samuli
    Hakonarson, Hakon
    Daly, Mark J.
    Palotie, Aarno
    Hinds, David A.
    Donnelly, Peter
    Fox, Caroline S.
    Day-Williams, Aaron G.
    Plenge, Robert M.
    Runz, Heiko
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [6] Meta-MultiSKAT: Multiple phenotype meta-analysis for region-based association test
    Dutta, Diptavo
    Taliun, Sarah A. Gagliano
    Weinstock, Joshua S.
    Zawistowski, Matthew
    Sidore, Carlo
    Fritsche, Lars G.
    Cucca, Francesco
    Schlessinger, David
    Abecasis, Goncalo R.
    Brummett, Chad M.
    Lee, Seunggeun
    [J]. GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 800 - 814
  • [7] Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes
    Dutta, Diptavo
    Scott, Laura
    Boehnke, Michael
    Lee, Seunggeun
    [J]. GENETIC EPIDEMIOLOGY, 2019, 43 (01) : 4 - 23
  • [8] Exploring and visualizing large-scale genetic associations by using PheWeb
    Gagliano Taliun, Sarah A.
    VandeHaar, Peter
    Boughton, Andrew P.
    Welch, Ryan P.
    Taliun, Daniel
    Schmidt, Ellen M.
    Zhou, Wei
    Nielsen, Jonas B.
    Willer, Cristen J.
    Lee, Seunggeun
    Fritsche, Lars G.
    Boehnke, Michael
    Abecasis, Goncalo R.
    [J]. NATURE GENETICS, 2020, 52 (06) : 550 - 552
  • [9] Gasdaska A, 2019, BIOCOMPUT-PAC SYM, P391
  • [10] Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach
    Guo, Bin
    Wu, Baolin
    [J]. BIOINFORMATICS, 2019, 35 (13) : 2251 - 2257