Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)

被引:7
|
作者
Kontopodis, Eleftherios E. [1 ,2 ]
Papadaki, Efrosini [1 ,2 ]
Trivzakis, Eleftherios [1 ,2 ]
Maris, Thomas G. [1 ,2 ]
Simos, Panagiotis [1 ,3 ]
Papadakis, Georgios Z. [1 ,2 ]
Tsatsakis, Aristidis [4 ]
Spandidos, Demetrios A. [5 ]
Karantanas, Apostolos [1 ,2 ]
Marias, Kostas [1 ,6 ]
机构
[1] Fdn Res & Technol Hellas, Inst Comp Sci, Computat BioMed Lab, 100 Nikolaou Plastira St, Iraklion 70013, Greece
[2] Univ Crete, Dept Radiol, Med Sch, Iraklion 70013, Greece
[3] Univ Crete, Med Sch, Dept Psychiat & Behav Sci, Iraklion 70013, Greece
[4] Univ Crete, Ctr Toxicol Sci & Res, Fac Med, Iraklion 71003, Greece
[5] Univ Crete, Med Sch, Lab Clin Virol, Iraklion 71003, Greece
[6] Hellenic Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
magnetic resonance imaging; diagnosis; multiple sclerosis; deep learning; clinical isolated syndrome; LESION SEGMENTATION; WHITE-MATTER; MRI; DIAGNOSIS; REVISIONS; ATROPHY; MYELIN;
D O I
10.3892/etm.2021.10583
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Computer-aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence-based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Comparison of Gadovist and Magnevist in Brain Magnetic Resonance Imaging of Multiple Sclerosis Patients with an Acute Attack
    Hashemi, Hassan
    Ghanaati, Hossein
    Behzadi, Somayeh
    Harirchian, Mohammad Hossein
    Amjad, Ghazaleh
    Shakiba, Madjid
    Ghavami, Nafiseh
    Naghibi, Hamed
    Firouznia, Kavous
    IRANIAN RED CRESCENT MEDICAL JOURNAL, 2021, 23 (02)
  • [42] Overview of the Large Bowel Assessment using Magnetic Resonance Imaging: Different Techniques for Current and Emerging Clinical Applications
    Cicero, Giuseppe
    Ascenti, Giorgio
    Blandino, Alfredo
    Booz, Christian
    Vogl, Thomas J.
    Trimarchi, Renato
    D'Angelo, Tommaso
    Mazziotti, Silvio
    CURRENT MEDICAL IMAGING, 2022, 18 (10) : 1031 - 1045
  • [43] Correlation between auto/mitophagic processes and magnetic resonance imaging activity in multiple sclerosis patients
    Castellazzi, Massimiliano
    Patergnani, Simone
    Donadio, Mariapina
    Giorgi, Carlotta
    Bonora, Massimo
    Fainardi, Enrico
    Casetta, Ilaria
    Granieri, Enrico
    Pugliatti, Maura
    Pinton, Paolo
    JOURNAL OF NEUROINFLAMMATION, 2019, 16 (1)
  • [44] Magnetic resonance imaging as surrogate for clinical endpoints in multiple sclerosis: data on novel oral drugs
    Sormani, M. P.
    Bonzano, L.
    Roccatagliata, L.
    De Stefano, N.
    MULTIPLE SCLEROSIS JOURNAL, 2011, 17 (05) : 630 - 633
  • [45] Analyzing magnetic resonance imaging data from glioma patients using deep learning
    Menze, Bjoern
    Isensee, Fabian
    Wiest, Roland
    Wiestler, Bene
    Maier-Hein, Klaus
    Reyes, Mauricio
    Bakas, Spyridon
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
  • [46] White matter and deep gray matter hemodynamic changes in multiple sclerosis patients with clinically isolated syndrome
    Papadaki, Efrosini Z.
    Mastorodemos, Vasileios C.
    Amanakis, Emmanouil Z.
    Tsekouras, Konstantinos C.
    Papadakis, Antonis E.
    Tsavalas, Nikolaos D.
    Simos, Panagiotis G.
    Karantanas, Apostolos H.
    Plaitakis, Andreas
    Maris, Thomas G.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) : 1932 - 1942
  • [47] Clinical trials and clinical practice in multiple sclerosis: conventional and emerging magnetic resonance imaging technologies.
    Filippi M.
    Rocca M.A.
    Rovaris M.
    Current Neurology and Neuroscience Reports, 2002, 2 (3) : 267 - 276
  • [48] Effects of Natalizumab and Fingolimod on Clinical, Cognitive, and Magnetic Resonance Imaging Measures in Multiple Sclerosis
    Preziosa, Paolo
    Rocca, Maria A.
    Riccitelli, Gianna C.
    Moiola, Lucia
    Storelli, Loredana
    Rodegher, Mariaemma
    Comi, Giancarlo
    Signori, Alessio
    Falini, Andrea
    Filippi, Massimo
    NEUROTHERAPEUTICS, 2020, 17 (01) : 208 - 217
  • [49] The impact of brain lesions on sexual dysfunction in patients with multiple sclerosis: A systematic review of magnetic resonance imaging studies
    Ramezani, Mahtab
    Ryan, Fari
    Sahraian, Mohammad Ali
    Simani, Leila
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 57
  • [50] Effects of Natalizumab and Fingolimod on Clinical, Cognitive, and Magnetic Resonance Imaging Measures in Multiple Sclerosis
    Paolo Preziosa
    Maria A. Rocca
    Gianna C. Riccitelli
    Lucia Moiola
    Loredana Storelli
    Mariaemma Rodegher
    Giancarlo Comi
    Alessio Signori
    Andrea Falini
    Massimo Filippi
    Neurotherapeutics, 2020, 17 : 208 - 217