Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)

被引:7
|
作者
Kontopodis, Eleftherios E. [1 ,2 ]
Papadaki, Efrosini [1 ,2 ]
Trivzakis, Eleftherios [1 ,2 ]
Maris, Thomas G. [1 ,2 ]
Simos, Panagiotis [1 ,3 ]
Papadakis, Georgios Z. [1 ,2 ]
Tsatsakis, Aristidis [4 ]
Spandidos, Demetrios A. [5 ]
Karantanas, Apostolos [1 ,2 ]
Marias, Kostas [1 ,6 ]
机构
[1] Fdn Res & Technol Hellas, Inst Comp Sci, Computat BioMed Lab, 100 Nikolaou Plastira St, Iraklion 70013, Greece
[2] Univ Crete, Dept Radiol, Med Sch, Iraklion 70013, Greece
[3] Univ Crete, Med Sch, Dept Psychiat & Behav Sci, Iraklion 70013, Greece
[4] Univ Crete, Ctr Toxicol Sci & Res, Fac Med, Iraklion 71003, Greece
[5] Univ Crete, Med Sch, Lab Clin Virol, Iraklion 71003, Greece
[6] Hellenic Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
magnetic resonance imaging; diagnosis; multiple sclerosis; deep learning; clinical isolated syndrome; LESION SEGMENTATION; WHITE-MATTER; MRI; DIAGNOSIS; REVISIONS; ATROPHY; MYELIN;
D O I
10.3892/etm.2021.10583
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Computer-aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence-based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics
    Rocca, Maria A.
    Anzalone, Nicoletta
    Storelli, Loredana
    Del Poggio, Anna
    Cacciaguerra, Laura
    Manfredi, Angelo A.
    Meani, Alessandro
    Filippi, Massimo
    INVESTIGATIVE RADIOLOGY, 2021, 56 (04) : 252 - 260
  • [22] Use of magnetic resonance imaging techniques in multiple sclerosis: Clinical applications and clues to pathogenesis
    Khan, OA
    Rothman, MI
    NEUROLOGIST, 1998, 4 (05) : 259 - 268
  • [23] Guidelines from The Italian Neurological and Neuroradiological Societies for the use of magnetic resonance imaging in daily life clinical practice of multiple sclerosis patients
    Filippi, Massimo
    Rocca, Maria A.
    Bastianello, Stefano
    Comi, Giancarlo
    Gallo, Paolo
    Gallucci, Massimo
    Ghezzi, Angelo
    Marrosu, Maria Giovanna
    Minonzio, Giorgio
    Pantano, Patrizia
    Pozzilli, Carlo
    Tedeschi, Gioacchino
    Trojano, Maria
    Falini, Andrea
    De Stefano, Nicola
    NEUROLOGICAL SCIENCES, 2013, 34 (12) : 2085 - 2093
  • [24] Magnetic resonance imaging detection of deep gray matter iron deposition in multiple sclerosis: A systematic review
    De Lury, Amy D.
    Bisulca, Joseph A.
    Lee, Jimmy S.
    Altaf, Muhammad D.
    Coyle, Patricia K.
    Duong, Tim Q.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2023, 453
  • [25] The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review
    Hossain, Md Zakir
    Daskalaki, Elena
    Bruestle, Anne
    Desborough, Jane
    Lueck, Christian J.
    Suominen, Hanna
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [26] Correlation between the clinical disability and T1 hypointense lesions' volume in cerebral magnetic resonance imaging of multiple sclerosis patients: A systematic review and meta-analysis
    Valizadeh, Amir
    Moassefi, Mana
    Barati, Elham
    Ali Sahraian, Mohammad
    Aghajani, Faezeh
    Fattahi, Mohammad-Reza
    CNS NEUROSCIENCE & THERAPEUTICS, 2021, 27 (11) : 1268 - 1280
  • [27] Magnetic resonance imaging markers of disability in Egyptian multiple sclerosis patients
    Abdelhafeez, Mohamed A.
    Zamzam, Dina A.
    Foad, Mohamed M.
    Swelam, Mahmoud S.
    Abdelnasser, Azza
    Aref, Hany A.
    Ibrahim, Yosra A.
    Khater, Nivan H.
    Darwish, Eman A.
    Zakaria, Magd F.
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2019, 36
  • [28] Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review
    Jafari, Mahboobeh
    Shoeibi, Afshin
    Khodatars, Marjane
    Ghassemi, Navid
    Moridian, Parisa
    Alizadehsani, Roohallah
    Khosravi, Abbas
    Ling, Sai Ho
    Delfan, Niloufar
    Zhang, Yu-Dong
    Wang, Shui-Hua
    Gorriz, Juan M.
    Alinejad-Rokny, Hamid
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 160
  • [29] Improving Quantitative Magnetic Resonance Imaging Using Deep Learning
    Liu, Fang
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (04) : 451 - 459
  • [30] Lesion features on magnetic resonance imaging discriminate multiple sclerosis patients
    Rua, Sandra M. Hurtado
    Kaunzner, Ulrike W.
    Pandya, Sneha
    Sweeney, Elizabeth
    Tozlu, Ceren
    Kuceyeski, Amy
    Nguyen, Thanh D.
    Gauthier, Susan A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 (01) : 237 - 246