Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)

被引:7
|
作者
Kontopodis, Eleftherios E. [1 ,2 ]
Papadaki, Efrosini [1 ,2 ]
Trivzakis, Eleftherios [1 ,2 ]
Maris, Thomas G. [1 ,2 ]
Simos, Panagiotis [1 ,3 ]
Papadakis, Georgios Z. [1 ,2 ]
Tsatsakis, Aristidis [4 ]
Spandidos, Demetrios A. [5 ]
Karantanas, Apostolos [1 ,2 ]
Marias, Kostas [1 ,6 ]
机构
[1] Fdn Res & Technol Hellas, Inst Comp Sci, Computat BioMed Lab, 100 Nikolaou Plastira St, Iraklion 70013, Greece
[2] Univ Crete, Dept Radiol, Med Sch, Iraklion 70013, Greece
[3] Univ Crete, Med Sch, Dept Psychiat & Behav Sci, Iraklion 70013, Greece
[4] Univ Crete, Ctr Toxicol Sci & Res, Fac Med, Iraklion 71003, Greece
[5] Univ Crete, Med Sch, Lab Clin Virol, Iraklion 71003, Greece
[6] Hellenic Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
magnetic resonance imaging; diagnosis; multiple sclerosis; deep learning; clinical isolated syndrome; LESION SEGMENTATION; WHITE-MATTER; MRI; DIAGNOSIS; REVISIONS; ATROPHY; MYELIN;
D O I
10.3892/etm.2021.10583
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Computer-aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence-based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review
    Shoeibi, Afshin
    Khodatars, Marjane
    Jafari, Mahboobeh
    Moridian, Parisa
    Rezaei, Mitra
    Alizadehsani, Roohallah
    Khozeimeh, Fahime
    Gorriz, Juan Manuel
    Heras, Jonathan
    Panahiazar, Maryam
    Nahavandi, Saeid
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [2] A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging
    Storelli, Loredana
    Azzimonti, Matteo
    Gueye, Mor
    Vizzino, Carmen
    Preziosa, Paolo
    Tedeschi, Gioachino
    De Stefano, Nicola
    Pantano, Patrizia
    Filippi, Massimo
    Rocca, Maria A.
    INVESTIGATIVE RADIOLOGY, 2022, 57 (07) : 423 - 432
  • [3] Magnetic Resonance Imaging Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis
    Peixoto, Sara
    Abreu, Pedro
    ACTA MEDICA PORTUGUESA, 2016, 29 (11): : 742 - 748
  • [4] Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis
    Mani, Ashika
    Santini, Tales
    Puppala, Radhika
    Dahl, Megan
    Venkatesh, Shruthi
    Walker, Elizabeth
    DeHaven, Megan
    Isitan, Cigdem
    Ibrahim, Tamer S.
    Wang, Long
    Zhang, Tao
    Gong, Enhao
    Barrios-Martinez, Jessica
    Yeh, Fang-Cheng
    Krafty, Robert
    Mettenburg, Joseph M.
    Xia, Zongqi
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [5] Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques
    Taloni, Alessandro
    Farrelly, Francis Allen
    Pontillo, Giuseppe
    Petsas, Nikolaos
    Gianni, Costanza
    Ruggieri, Serena
    Petracca, Maria
    Brunetti, Arturo
    Pozzilli, Carlo
    Pantano, Patrizia
    Tommasin, Silvia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [6] Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging
    Danelakis, Antonios
    Theoharis, Theoharis
    Verganelakis, Dimitrios A.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 : 83 - 100
  • [7] Prognostic value of magnetic resonance imaging in patients with clinically isolated syndrome conversion to multiple sclerosis: A meta-analysis
    Zhang, Wei-Yan
    Hou, Yu-li
    NEUROLOGY INDIA, 2013, 61 (03) : 231 - 238
  • [8] The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials
    Mahajan, Kedar R.
    Ontaneda, Daniel
    NEUROTHERAPEUTICS, 2017, 14 (04) : 905 - 923
  • [9] The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials
    Kedar R. Mahajan
    Daniel Ontaneda
    Neurotherapeutics, 2017, 14 : 905 - 923
  • [10] Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review
    Diaz-Hurtado, Marcos
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Casas-Roma, Jordi
    Llufriu, Sara
    Kanber, Baris
    Prados, Ferran
    NEURORADIOLOGY, 2022, 64 (11) : 2103 - 2117