Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)

被引:7
作者
Kontopodis, Eleftherios E. [1 ,2 ]
Papadaki, Efrosini [1 ,2 ]
Trivzakis, Eleftherios [1 ,2 ]
Maris, Thomas G. [1 ,2 ]
Simos, Panagiotis [1 ,3 ]
Papadakis, Georgios Z. [1 ,2 ]
Tsatsakis, Aristidis [4 ]
Spandidos, Demetrios A. [5 ]
Karantanas, Apostolos [1 ,2 ]
Marias, Kostas [1 ,6 ]
机构
[1] Fdn Res & Technol Hellas, Inst Comp Sci, Computat BioMed Lab, 100 Nikolaou Plastira St, Iraklion 70013, Greece
[2] Univ Crete, Dept Radiol, Med Sch, Iraklion 70013, Greece
[3] Univ Crete, Med Sch, Dept Psychiat & Behav Sci, Iraklion 70013, Greece
[4] Univ Crete, Ctr Toxicol Sci & Res, Fac Med, Iraklion 71003, Greece
[5] Univ Crete, Med Sch, Lab Clin Virol, Iraklion 71003, Greece
[6] Hellenic Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
magnetic resonance imaging; diagnosis; multiple sclerosis; deep learning; clinical isolated syndrome; LESION SEGMENTATION; WHITE-MATTER; MRI; DIAGNOSIS; REVISIONS; ATROPHY; MYELIN;
D O I
10.3892/etm.2021.10583
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Computer-aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence-based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
引用
收藏
页数:17
相关论文
共 83 条
[1]   Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data [J].
Ackaouy, Antoine ;
Courty, Nicolas ;
Vallee, Emmanuel ;
Commowick, Olivier ;
Barillot, Christian ;
Galassi, Francesca .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[2]   Lesion load assessment among multiple sclerosis patient using DIR, FLAIR, and T2WI sequences [J].
Almutairi, Abdullah Dhaifallah ;
Abu Hassan, Hasyma ;
Suppiah, Subapriya ;
Alomair, Othman I. ;
Alshoaibi, Abdulbaset ;
Almutairi, Hajab ;
Mahmud, Rozi .
EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2020, 51 (01)
[3]   Multi-branch convolutional neural network for multiple sclerosis lesion segmentation [J].
Aslani, Shahab ;
Dayan, Michael ;
Storelli, Loredana ;
Filippi, Massimo ;
Murino, Vittorio ;
Rocca, Maria A. ;
Sona, Diego .
NEUROIMAGE, 2019, 196 :1-15
[4]   Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions [J].
Bakshi, R ;
Ariyaratana, S ;
Benedict, RHB ;
Jacobs, L .
ARCHIVES OF NEUROLOGY, 2001, 58 (05) :742-748
[5]   RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis [J].
Barquero, German ;
La Rosa, Francesco ;
Kebiri, Hamza ;
Lu, Po-Jui ;
Rahmanzadeh, Reza ;
Weigel, Matthias ;
Fartaria, Mario Joao ;
Kober, Tobias ;
Theaudin, Marie ;
Du Pasquier, Renaud ;
Sati, Pascal ;
Reich, Daniel S. ;
Absinta, Martina ;
Granziera, Cristina ;
Maggi, Pietro ;
Cuadra, Meritxell Bach .
NEUROIMAGE-CLINICAL, 2020, 28
[6]   Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study [J].
Bergsland, Niels ;
Horakova, Dana ;
Dwyer, Michael G. ;
Uher, Tomas ;
Vaneckova, Manuela ;
Tyblova, Michaela ;
Seidl, Zdenek ;
Krasensky, Jan ;
Havrdova, Eva ;
Zivadinov, Robert .
NEUROIMAGE-CLINICAL, 2018, 17 :444-451
[7]   Multi-view longitudinal CNN for multiple sclerosis lesion segmentation [J].
Birenbaum, Ariel ;
Greenspan, Hayit .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 :111-118
[8]   DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping [J].
Bollmann, Steffen ;
Rasmussen, Kasper Gade Botker ;
Kristensen, Mads ;
Blendal, Rasmus Guldhammer ;
Ostergaard, Lasse Riis ;
Plocharski, Maciej ;
O'Brien, Kieran ;
Langkammer, Christian ;
Janke, Andrew ;
Barth, Markus .
NEUROIMAGE, 2019, 195 :373-383
[9]   Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies [J].
Brown, Robert A. ;
Fetco, Dumitru ;
Fratila, Robert ;
Fadda, Giulia ;
Jiang, Shangge ;
Alkhawajah, Nuha M. ;
Yeh, E. Ann ;
Banwell, Brenda ;
Bar-Or, Amit ;
Arnold, Douglas L. .
NEUROIMAGE, 2020, 208
[10]  
Carass A, 2017, DATA BRIEF, V12, P346, DOI 10.1016/j.dib.2017.04.004