Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks

被引:19
|
作者
DeDora, Daniel J. [1 ]
Nedic, Sanja [1 ]
Katti, Pratha [1 ]
Arnab, Shafique [1 ]
Wald, Lawrence L. [2 ,3 ,4 ]
Takahashi, Atsushi [5 ]
Van Dijk, Koene R. A. [2 ,6 ]
Strey, Helmut H. [1 ]
Mujica-Parodi, Lilianne R. [1 ,2 ,3 ,5 ]
机构
[1] SUNY Stony Brook, Sch Med, Dept Biomed Engn, Stony Brook, NY 11794 USA
[2] Massachusetts Gen Hosp, Dept Radiol, Athihoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Harvard Univ, Sch Med, Dept Radiol, Boston, MA 02115 USA
[4] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[5] MIT, McGovern Inst Brain Res, Boston, MA USA
[6] Harvard Univ, Dept Psychol, Ctr Brain Sci, 33 Kirkland St, Cambridge, MA 02138 USA
来源
FRONTIERS IN NEUROSCIENCE | 2016年 / 10卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Functional MRI; signal fluctuation sensitivity; resting state connectivity; temporal signal to noise ratio; dynamic phantom; fidelity; FUNCTIONAL CONNECTIVITY MRI; HUMAN BRAIN; REGIONAL HOMOGENEITY; 1.5; T; OPTIMIZATION; RESOLUTION; DISEASE; FUTURE; MOTION; CORTEX;
D O I
10.3389/fnins.2016.00180
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Task-free connectivity analyses have emerged as a powerful tool in functional neuroimaging. Because the cross correlations that underlie connectivity measures are sensitive to distortion of time-series, here we used a novel dynamic phantom to provide a ground truth for dynamic fidelity between blood oxygen level dependent (BOLD)-like inputs and fMRI outputs. We found that the de facto quality-metric for task-free fMRI, temporal signal to noise ratio (tSNR), correlated inversely with dynamic fidelity; thus, studies optimized for tSNR actually produced time-series that showed the greatest distortion of signal dynamics. Instead, the phantom showed that dynamic fidelity is reasonably approximated by a measure that, unlike tSNR, dissociates signal dynamics from scanner artifact. We then tested this measure, signal fluctuation sensitivity (SFS), against human resting-state data. As predicted by the phantom, SFS-and not tSNR-is associated with enhanced sensitivity to both local and long-range connectivity within the brain's default mode network.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Cluster analysis of resting-state fMRI time series
    Mezer, Aviv
    Yovel, Yossi
    Pasternak, Ofer
    Gorfine, Tali
    Assaf, Yaniv
    NEUROIMAGE, 2009, 45 (04) : 1117 - 1125
  • [22] Resting-State fMRI Using Passband Balanced Steady-State Free Precession
    Cheng, Joe S.
    Gao, Patrick P.
    Zhou, Iris Y.
    Chan, Russell W.
    Chan, Queenie
    Mak, Henry K.
    Khong, Pek L.
    Wu, Ed X.
    PLOS ONE, 2014, 9 (03):
  • [23] Disrupted Brain Connectivity Networks in Aphasia Revealed by Resting-State fMRI
    Chen, Xiaoyun
    Chen, Liting
    Zheng, Senning
    Wang, Hong
    Dai, Yanhong
    Chen, Zhuoming
    Huang, Ruiwang
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [24] The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures
    Wong, Chi Wah
    Olafsson, Valur
    Tal, Omer
    Liu, Thomas T.
    NEUROIMAGE, 2013, 83 : 983 - 990
  • [25] A method to determine the necessity for global signal regression in resting-state fMRI studies
    Chen, Gang
    Chen, Guangyu
    Xie, Chunming
    Ward, B. Douglas
    Li, Wenjun
    Antuono, Piero
    Li, Shi-Jiang
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) : 1828 - 1835
  • [26] Amplitude of low-frequency fluctuation after taste exposure revealed by resting-state fMRI
    Chen, Jie
    Zhao, Mengqi
    Huang, Lina
    Liu, Yuansheng
    Li, Xueying
    Jia, Xize
    Ding, Qingguo
    Wang, Chunjie
    Liang, Pei
    PHYSIOLOGY & BEHAVIOR, 2023, 261
  • [27] Improved Correspondence of Resting-State Networks After Macroanatomical Alignment
    Frost, Martin A.
    Esposito, Fabrizio
    Goebel, Rainer
    HUMAN BRAIN MAPPING, 2014, 35 (02) : 673 - 682
  • [28] Resting-state fMRI in the Human Connectome Project
    Smith, Stephen M.
    Beckmann, Christian F.
    Andersson, Jesper
    Auerbach, Edward J.
    Bijsterbosch, Janine
    Douaud, Gwenaelle
    Duff, Eugene
    Feinberg, David A.
    Griffanti, Ludovica
    Harms, Michael P.
    Kelly, Michael
    Laumann, Timothy
    Miller, Karla L.
    Moeller, Steen
    Petersen, Steve
    Power, Jonathan
    Salimi-Khorshidi, Gholamreza
    Snyder, Abraham Z.
    Vu, An T.
    Woolrich, Mark W.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    Glasser, Matthew F.
    NEUROIMAGE, 2013, 80 : 144 - 168
  • [29] Machine learning in resting-state fMRI analysis
    Khosla, Meenakshi
    Jamison, Keith
    Ngo, Gia H.
    Kuceyeski, Amy
    Sabuncu, Mert R.
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 101 - 121
  • [30] Alterations of resting-state fMRI measurements in individuals with cervical dystonia
    Li, Zhihao
    Prudente, Cecilia N.
    Stilla, Randall
    Sathian, K.
    Jinnah, H. A.
    Hu, Xiaoping
    HUMAN BRAIN MAPPING, 2017, 38 (08) : 4098 - 4108