Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks

被引:19
|
作者
DeDora, Daniel J. [1 ]
Nedic, Sanja [1 ]
Katti, Pratha [1 ]
Arnab, Shafique [1 ]
Wald, Lawrence L. [2 ,3 ,4 ]
Takahashi, Atsushi [5 ]
Van Dijk, Koene R. A. [2 ,6 ]
Strey, Helmut H. [1 ]
Mujica-Parodi, Lilianne R. [1 ,2 ,3 ,5 ]
机构
[1] SUNY Stony Brook, Sch Med, Dept Biomed Engn, Stony Brook, NY 11794 USA
[2] Massachusetts Gen Hosp, Dept Radiol, Athihoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Harvard Univ, Sch Med, Dept Radiol, Boston, MA 02115 USA
[4] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[5] MIT, McGovern Inst Brain Res, Boston, MA USA
[6] Harvard Univ, Dept Psychol, Ctr Brain Sci, 33 Kirkland St, Cambridge, MA 02138 USA
来源
FRONTIERS IN NEUROSCIENCE | 2016年 / 10卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Functional MRI; signal fluctuation sensitivity; resting state connectivity; temporal signal to noise ratio; dynamic phantom; fidelity; FUNCTIONAL CONNECTIVITY MRI; HUMAN BRAIN; REGIONAL HOMOGENEITY; 1.5; T; OPTIMIZATION; RESOLUTION; DISEASE; FUTURE; MOTION; CORTEX;
D O I
10.3389/fnins.2016.00180
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Task-free connectivity analyses have emerged as a powerful tool in functional neuroimaging. Because the cross correlations that underlie connectivity measures are sensitive to distortion of time-series, here we used a novel dynamic phantom to provide a ground truth for dynamic fidelity between blood oxygen level dependent (BOLD)-like inputs and fMRI outputs. We found that the de facto quality-metric for task-free fMRI, temporal signal to noise ratio (tSNR), correlated inversely with dynamic fidelity; thus, studies optimized for tSNR actually produced time-series that showed the greatest distortion of signal dynamics. Instead, the phantom showed that dynamic fidelity is reasonably approximated by a measure that, unlike tSNR, dissociates signal dynamics from scanner artifact. We then tested this measure, signal fluctuation sensitivity (SFS), against human resting-state data. As predicted by the phantom, SFS-and not tSNR-is associated with enhanced sensitivity to both local and long-range connectivity within the brain's default mode network.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Global signal regression acts as a temporal downweighting process in resting-state fMRI
    Nalci, Alican
    Rao, Bhaskar D.
    Liu, Thomas T.
    NEUROIMAGE, 2017, 152 : 602 - 618
  • [2] Fast detection and reduction of local transient artifacts in resting-state fMRI
    Jo, Hang Joon
    Reynolds, Richard C.
    Gotts, Stephen J.
    Handwerker, Daniel A.
    Balzekas, Irena
    Martin, Alex
    Cox, Robert W.
    Bandettini, Peter A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120
  • [3] Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level
    Jia, Xi-Ze
    Sun, Jia-Wei
    Ji, Gong-Jun
    Liao, Wei
    Lv, Ya-Ting
    Wang, Jue
    Wang, Ze
    Zhang, Han
    Liu, Dong-Qiang
    Zang, Yu-Feng
    PLOS ONE, 2020, 15 (01):
  • [4] Changes in resting-state fMRI in vestibular neuritis
    Helmchen, Christoph
    Ye, Zheng
    Sprenger, Andreas
    Munte, Thomas F.
    BRAIN STRUCTURE & FUNCTION, 2014, 219 (06) : 1889 - 1900
  • [5] On the generalizability of resting-state fMRI machine learning classifiers
    Huf, Wolfgang
    Kalcher, Klaudius
    Boubela, Roland N.
    Rath, Georg
    Vecsei, Andreas
    Filzmoser, Peter
    Moser, Ewald
    FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8
  • [6] Gaining insight into the neural basis of resting-state fMRI signal
    Ma, Zilu
    Zhang, Qingqing
    Tu, Wenyu
    Zhang, Nanyin
    NEUROIMAGE, 2022, 250
  • [7] Improved shimming for fMRI specifically optimizing the local BOLD sensitivity
    Balteau, Evelyne
    Hutton, Chloe
    Weiskopf, Nikolaus
    NEUROIMAGE, 2010, 49 (01) : 327 - 336
  • [8] Resting-state fMRI in primary Sjogren syndrome
    Xing, Wu
    Shi, Wei
    Leng, Yueshuang
    Sun, Xianting
    Guan, Tingting
    Liao, Weihua
    Wang, Xiaoyi
    ACTA RADIOLOGICA, 2018, 59 (09) : 1091 - 1096
  • [9] Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan
    Dong, Jianxin
    Jing, Bin
    Ma, Xiangyu
    Liu, Han
    Mo, Xiao
    Li, Haiyun
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [10] An improved spectral clustering method for accurate detection of brain resting-state networks
    Barrett, Jason
    Meng, Haomiao
    Zhang, Zongpai
    Chen, Song M.
    Zhao, Li
    Alsop, David C.
    Qiao, Xingye
    Dai, Weiying
    NEUROIMAGE, 2024, 299