Adaptive Multi-feature Fusion for Correlation Filter Tracking

被引:1
作者
Liu, Linfeng [1 ]
Yan, Xiaole [1 ]
Shen, Qiu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 210016, Jiangsu, Peoples R China
来源
COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS | 2019年 / 463卷
关键词
Visual tracking; Feature representation; Multi-feature fusion; Correlation filter; OBJECT TRACKING; VISUAL TRACKING;
D O I
10.1007/978-981-10-6571-2_128
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Robust visual object tracking is a challenging task in computer vision. Recently correlation filter-based trackers (CFTs) have aroused increasing interests because of the good performance and high efficiency. However, most feature representations for CFTs are not discriminative enough, which makes the trackers unreliable in complicated and changing scenarios. To address the problem, this paper presents an adaptive multi-feature fusion method based on kernelized correlation filter (KCF) framework. First we select HOG, LBP and grayscale feature for fusion to obtain more complementary and powerful feature. Then we propose a novel multi-feature fusion strategy, and adaptively calculate the feature's fusion weight using probability separability criterion. The experimental results show that our method not only achieves better accuracy compared with existing features for KCF tracker, but also achieves state-of-the-art performance when running at 87 frames per second.
引用
收藏
页码:1057 / 1066
页数:10
相关论文
共 31 条
  • [1] [Anonymous], 2015, ARXIV150905520
  • [2] [Anonymous], 2016, IEEE T PATTERN ANAL
  • [3] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [4] Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881
  • [5] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [6] Bosch A, 2007, IEEE I CONF COMP VIS, P1863
  • [7] Danelljan M., 2014, P BRIT MACH VIS C
  • [8] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [9] Object Detection with Discriminatively Trained Part-Based Models
    Felzenszwalb, Pedro F.
    Girshick, Ross B.
    McAllester, David
    Ramanan, Deva
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1627 - 1645
  • [10] Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251