Amount of nonconstructivity in deterministic finite automata

被引:10
作者
Freivalds, Rusins [1 ]
机构
[1] Univ Latvia, Inst Math & Comp Sci, LV-1459 Riga, Latvia
关键词
Finite automata; Nonconstructive methods; Kolmogorov complexity; PROBABILISTIC-AUTOMATA;
D O I
10.1016/j.tcs.2010.05.038
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
When D. Hilbert used nonconstructive methods in his famous paper on invariants (1888), P. Gordan tried to prevent the publication of this paper considering these methods as non-mathematical. L.E.J. Brouwer in the early twentieth century initiated intuitionist movement in mathematics. His slogan was "nonconstructive arguments have no value for mathematics". However, P. Erdos got many exciting results in discrete mathematics by nonconstructive methods. It is widely believed that these results either cannot be proved by constructive methods or the proofs would have been prohibitively complicated. The author (Freivalds, 2008) [10] showed that nonconstructive methods in coding theory are related to the notion of Kolmogorov complexity. We study the problem of the quantitative characterization of the amount of nonconstructiveness in nonconstructive arguments. We limit ourselves to computation by deterministic finite automata. The notion of nonconstructive computation by finite automata is introduced. Upper and lower bounds of nonconstructivity are proved. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3436 / 3443
页数:8
相关论文
共 21 条