Fractional vegetation cover estimation over large regions using GF-1 satellite data
被引:6
|
作者:
Zhan, Yulin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Zhan, Yulin
[1
]
Meng, Qingyan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Meng, Qingyan
[1
]
Wang, Chunmei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Wang, Chunmei
[1
]
Li, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Li, Juan
[1
]
Zhou, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Zhou, Ke
[1
]
Li, Dachong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Li, Dachong
[1
]
机构:
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
来源:
LAND SURFACE REMOTE SENSING II
|
2014年
/
9260卷
关键词:
Fractional vegetation cover;
GF-1;
satellite;
Remote Sensing;
Large Regions;
D O I:
10.1117/12.2069845
中图分类号:
TP7 [遥感技术];
学科分类号:
081102 ;
0816 ;
081602 ;
083002 ;
1404 ;
摘要:
This paper evaluates the usefulness of the WFV (Wide Field View) imager onboard GF-1 satellite in vegetation mapping. Fractional vegetation cover (FVC) is an important surface microclimate parameter for characterizing land surface vegetation cover. Three kinds of remote sensing inversion models (NDVI regression model, spectral mixture analysis (SMA) model and dimidiate pixel model) were used to derive FVC with the GF-1/WFV data. The verification indicates that the FVC results based on the dimidiate pixel model are well agreement with the in situ measurements. And the estimated FVC result in Beijing-tianjin-hebei region demonstrate that the GF-1/WFV data are fit for studying vegetation over large regions.