Vortex ring with swirl: A numerical study

被引:26
作者
Cheng, M. [1 ]
Lou, J. [1 ]
Lim, T. T. [2 ]
机构
[1] Inst High Performance Comp, Singapore 138632, Singapore
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
LATTICE BOLTZMANN METHOD; AXIAL-FLOW; EULER EQUATIONS; INSTABILITY; DYNAMICS; JETS; SIMULATION; STABILITY; FLUID; RECONNECTION;
D O I
10.1063/1.3478976
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we use a lattice Boltzmann method to study the effect of swirl on the dynamics of an isolated three-dimensional vortex ring in a viscous incompressible fluid. We focus on a fixed Reynolds number of 800 and vary swirl magnitude and vortex core size. Results show that increasing swirl for a fixed core size or increasing core size for a fixed swirl causes vortex ring to slow down or even travel backward initially. A simplified physical explanation for this dynamic behavior is proposed. Our results further show that while a weak swirl causes vortex filaments to undergo helical winding, a sufficiently strong swirl transforms these windings into convoluted three-dimensional vortex structure with vortex loops trailing behind it. Each of these vortex loops may reconnect with itself, through the process of vortex reconnection, to form a ringlet. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478976]
引用
收藏
页数:9
相关论文
共 65 条
[1]   The impact of a vortex ring on a porous screen [J].
Adhikari, D. ;
Lim, T. T. .
FLUID DYNAMICS RESEARCH, 2009, 41 (05)
[2]   Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime [J].
Archer, P. J. ;
Thomas, T. G. ;
Coleman, G. N. .
JOURNAL OF FLUID MECHANICS, 2008, 598 (201-226) :201-226
[3]   AXIAL FLOW IN TRAILING LINE VORTICES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1964, 20 (04) :645-658
[4]   Experimental study of vortex breakdown in swirling jets [J].
Billant, P ;
Chomaz, JM ;
Huerre, P .
JOURNAL OF FLUID MECHANICS, 1998, 376 :183-219
[5]   DIRECT NUMERICAL SIMULATIONS OF ROUND JETS - VORTEX INDUCTION AND SIDE JETS [J].
BRANCHER, P ;
CHOMAZ, JM ;
HUERRE, P .
PHYSICS OF FLUIDS, 1994, 6 (05) :1768-1774
[6]   Reconnection of colliding vortex rings [J].
Chatelain, P ;
Kivotides, D ;
Leonard, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]   Linear shear flow over a square cylinder at low Reynolds number [J].
Cheng, M ;
Tan, SHN ;
Hung, KC .
PHYSICS OF FLUIDS, 2005, 17 (07) :1-4
[9]   Motion of a vortex ring in a simple shear flow [J].
Cheng, M. ;
Lou, J. ;
Lim, T. T. .
PHYSICS OF FLUIDS, 2009, 21 (08)
[10]  
CHENG M, J FLUID MEC IN PRESS