Boundedness of global solutions of one dimensional quasilinear degenerate parabolic equations

被引:5
作者
Suzuki, R [1 ]
机构
[1] Kokushikan Univ, Fac Engn, Dept Math, Setagaya Ku, Tokyo 154, Japan
关键词
D O I
10.2969/jmsj/05010119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:119 / 138
页数:20
相关论文
共 50 条
[42]   A priori estimates for quasilinear degenerate parabolic equations [J].
Manfredini, M ;
Pascucci, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1115-1120
[44]   On the solvability of double degenerate quasilinear parabolic equations [J].
Fisher, B ;
Liu, Z .
ACTA MATHEMATICA HUNGARICA, 2002, 96 (1-2) :117-124
[45]   THE CONDITIONS FOR THERE TO BE NO GLOBAL-SOLUTIONS OF A CLASS OF QUASILINEAR PARABOLIC EQUATIONS [J].
GALAKTIONOV, VA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (02) :73-90
[46]   Initial evolution of supports of solutions of quasilinear parabolic equations with degenerate absorption potential [J].
Stepanova, K. V. ;
Shishkov, A. E. .
SBORNIK MATHEMATICS, 2013, 204 (03) :383-410
[47]   Viscosity solutions of a class of degenerate quasilinear parabolic equations with Dirichlet boundary condition [J].
Ruan, W. H. ;
Pao, C. V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (07) :3292-3312
[48]   GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS WITH NONLINEARITY OF ARBITRARY ORDER [J].
Tran Thi Quynh Chi ;
Le Thi Thuy ;
Nguyen Xuan Tu .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (03) :447-463
[49]   PRIORI ESTIMATES AND HARNACKS INEQUALITY FOR GENERALIZED SOLUTIONS OF DEGENERATE QUASILINEAR PARABOLIC EQUATIONS [J].
KRUZHKOV, SN ;
KOLODII, IM .
SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (03) :434-449
[50]   Conditions for the Time Global Existence and Nonexistence of a Compact Support of Solutions to the Cauchy Problem for Quasilinear Degenerate Parabolic Equations [J].
A. F. Tedeev .
Siberian Mathematical Journal, 2004, 45 :155-164