Boundedness of global solutions of one dimensional quasilinear degenerate parabolic equations

被引:5
作者
Suzuki, R [1 ]
机构
[1] Kokushikan Univ, Fac Engn, Dept Math, Setagaya Ku, Tokyo 154, Japan
关键词
D O I
10.2969/jmsj/05010119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:119 / 138
页数:20
相关论文
共 50 条
[31]   Viscosity solutions for quasilinear degenerate parabolic equations of porous medium type [J].
Brändle, C ;
Vázquez, JL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (03) :817-860
[32]   GLOBAL BOUNDEDNESS AND STABILITY OF SOLUTIONS OF NONAUTONOMOUS DEGENERATE DIFFERENTIAL EQUATIONS [J].
Filipkovska, Maria S. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2020, 46 (02) :243-271
[33]   On the global solutions to a class of strongly degenerate parabolic equations [J].
Ghergu, Marius .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1430-1442
[34]   On global solutions for quasilinear one-dimensional parabolic problems with dynamical boundary conditions [J].
Gvelesiani, Simon ;
Lippoth, Friedrich ;
Walker, Christoph .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) :7060-7085
[35]   Boundedness and blowup for nonlinear degenerate parabolic equations [J].
Chen, Shaohua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) :1087-1095
[36]   Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system [J].
Yujuan Chen .
Czechoslovak Mathematical Journal, 2010, 60 :675-688
[37]   GLOBAL AND NON-GLOBAL EXISTENCE OF SOLUTIONS TO A NONLOCAL AND DEGENERATE QUASILINEAR PARABOLIC SYSTEM [J].
Chen, Yujuan .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) :675-688
[38]   On the Solvability of Double Degenerate Quasilinear Parabolic Equations [J].
Brian Fisher ;
Zhenhai Liu .
Acta Mathematica Hungarica, 2002, 96 :117-124
[39]   On the Wiener criterion for quasilinear degenerate parabolic equations [J].
Skrypnik, II .
DOKLADY MATHEMATICS, 2004, 70 (02) :743-746
[40]   Quasilinear parabolic equations with a degenerate absorption potential [J].
Yevgenieva Y.O. .
Journal of Mathematical Sciences, 2019, 242 (3) :457-468