Boundedness of global solutions of one dimensional quasilinear degenerate parabolic equations

被引:5
作者
Suzuki, R [1 ]
机构
[1] Kokushikan Univ, Fac Engn, Dept Math, Setagaya Ku, Tokyo 154, Japan
关键词
D O I
10.2969/jmsj/05010119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:119 / 138
页数:20
相关论文
共 50 条
[21]   Global existence and blowup solutions for quasilinear parabolic equations [J].
Chen, Shaohua ;
Yu, Deming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :151-167
[22]   Existence and nonexistence of global solutions of quasilinear parabolic equations [J].
Suzuki, R .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) :747-792
[23]   GLOBAL-SOLUTIONS OF ABSTRACT QUASILINEAR PARABOLIC EQUATIONS [J].
LUNARDI, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 58 (02) :228-242
[24]   Boundedness of Weak Solutions of a Nondiagonal Degenerate Parabolic System of Three Equations [J].
Portnyagin, D. V. .
DIFFERENTIAL EQUATIONS, 2008, 44 (08) :1178-1182
[25]   Boundedness of weak solutions of a nondiagonal degenerate parabolic system of three equations [J].
D. V. Portnyagin .
Differential Equations, 2008, 44 :1178-1182
[26]   BOUNDEDNESS FOR THE SOLUTIONS OF A DEGENERATE PARABOLIC EQUATION [J].
CHIARENZA, F ;
FRASCA, M .
APPLICABLE ANALYSIS, 1984, 17 (04) :243-261
[28]   ATTRACTIVITY PROPERTIES OF SOLUTIONS FOR DEGENERATE QUASILINEAR PARABOLIC EQUATIONS OF HIGHER ORDER [J].
刘振海 ;
文贤章 .
AnnalsofDifferentialEquations, 2000, (02) :169-176
[29]   Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system [J].
Bieganowski, Bartosz ;
Cieslak, Tomasz ;
Fujie, Kentarou ;
Senba, Takasi .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) :724-732
[30]   EXISTENCE AND UNIQUENESS OFWEAK SOLUTIONS OF UNIFORMLY DEGENERATE QUASILINEAR PARABOLIC EQUATIONS [J].
陈亚浙 .
ChineseAnnalsofMathematics, 1985, (02) :131-145