Domain decomposition methods via boundary integral equations

被引:47
作者
Hsiao, GC
Steinbach, O
Wendland, WL
机构
[1] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
domain decomposition; boundary integral equations; boundary element methods; preconditioning techniques;
D O I
10.1016/S0377-0427(00)00488-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Domain decomposition methods are designed to deal with coupled or transmission problems for partial differential equations. Since the original boundary value problem is replaced by local problems in substructures, domain decomposition methods are well suited for both parallelization and coupling of different discretization schemes. In general, the coupled problem is reduced to the Schur complement equation on the skeleton of the domain decomposition. Boundary integral equations are used to describe the local Steklov-Poincare operators which are basic for the local Dirichlet-Neumann maps. Using different representations of the Steklov-Poincare operators we formulate and analyze various boundary element methods employed in local discretization schemes. We give sufficient conditions for the global stability and derive corresponding a priori error estimates. For the solution of the resulting linear systems we describe appropriate iterative solution strategies using both local and global preconditioning techniques. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:521 / 537
页数:17
相关论文
共 35 条
[1]  
[Anonymous], BOUNDARY ELEMENTS 9
[2]  
BONNET M, 1998, APPL MECH REV, V51, P669
[3]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[4]   THE ANALYSIS OF MULTIGRID ALGORITHMS FOR PSEUDODIFFERENTIAL-OPERATORS OF ORDER MINUS ONE [J].
BRAMBLE, JH ;
LEYK, Z ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1994, 63 (208) :461-478
[5]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[6]   Fast parallel solvers for symmetric boundary element domain decomposition equations [J].
Carstensen, C ;
Kuhn, M ;
Langer, U .
NUMERISCHE MATHEMATIK, 1998, 79 (03) :321-347
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]  
COSTABEL M, 1986, J REINE ANGEW MATH, V372, P34
[9]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[10]  
FIEDLER C, 1996, MECH RES COMMUN, V23, P3074