CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS

被引:0
作者
Banas, Lubomir [1 ,2 ]
Prohl, Andreas [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
APPROXIMATION; STATIONARY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convergent implicit stabilized finite element discretization of the nonstationary incompressible magnetohydrodynamics equations with variable density, viscosity, and electric conductivity. The discretization satisfies a discrete energy law, and a discrete maximum principle for the positive density, and iterates converge to weak solutions of the limiting problem for vanishing discretization parameters. A simple fixed point scheme, together with an appropriate stopping criterion is proposed, which decouples the computation of density, velocity, and magnetic field, and inherits the above properties, provided a mild mesh constraint holds. Computational studies are provided.
引用
收藏
页码:1957 / 1999
页数:43
相关论文
共 50 条
[41]   Two-Level Finite Element Iterative Algorithm Based on Stabilized Method for the Stationary Incompressible Magnetohydrodynamics [J].
Tang, Qili ;
Hou, Min ;
Xiao, Yajie ;
Yin, Lina .
ENTROPY, 2022, 24 (10)
[42]   Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations [J].
Zhu, Tielei ;
Su, Haiyan ;
Feng, Xinlong .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 302 :34-47
[43]   A FINITE-ELEMENT FRAMEWORK FOR A MIMETIC FINITE-DIFFERENCE DISCRETIZATION OF MAXWELL'S EQUATIONS [J].
Adler, James H. ;
Cavanaugh, Casey ;
Hu, Xiaozhe ;
Zikatanov, Ludmil T. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04) :A2638-A2659
[44]   A LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHOD FOR NON-STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM [J].
Yu, Zhiyun ;
Shi, Dongyang ;
Zhu, Huiqing .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (04) :569-587
[45]   A Finite Element-Finite Volume Code Coupling for Optimal Control Problems in Fluid Heat Transfer for Incompressible Navier-Stokes Equations [J].
Baldini, Samuele ;
Barbi, Giacomo ;
Bornia, Giorgio ;
Cervone, Antonio ;
Giangolini, Federico ;
Manservisi, Sandro ;
Sirotti, Lucia .
MATHEMATICS, 2025, 13 (11)
[46]   A consistent projection finite element method for the non-stationary incompressible thermally coupled MHD equations [J].
Si, Zhiyong ;
Hou, Akang ;
Wang, Yunxia .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
[47]   AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS [J].
Bernardi, Christine ;
Chacon Rebollo, Tomas ;
Hecht, Frederic ;
Lewandowski, Roger .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (07) :1139-1183
[48]   Parametric finite-element discretization of the surface Stokes equations: inf-sup stability and discretization error analysis [J].
Hardering, Hanne ;
Praetorius, Simon .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
[49]   LOCAL AND PARALLEL FINITE ELEMENT ALGORITHMS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DAMPING [J].
Wassim, Eid ;
Shang, Yueqiang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11) :6823-6840
[50]   CONVERGENCE ANALYSIS OF SOME FINITE ELEMENT PARALLEL ALGORITHMS FOR THE STATIONARY INCOMPRESSIBLE MHD EQUATIONS [J].
Dong, Xiaojing ;
He, Yinnian .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (01) :49-70