CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS

被引:0
作者
Banas, Lubomir [1 ,2 ]
Prohl, Andreas [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
APPROXIMATION; STATIONARY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convergent implicit stabilized finite element discretization of the nonstationary incompressible magnetohydrodynamics equations with variable density, viscosity, and electric conductivity. The discretization satisfies a discrete energy law, and a discrete maximum principle for the positive density, and iterates converge to weak solutions of the limiting problem for vanishing discretization parameters. A simple fixed point scheme, together with an appropriate stopping criterion is proposed, which decouples the computation of density, velocity, and magnetic field, and inherits the above properties, provided a mild mesh constraint holds. Computational studies are provided.
引用
收藏
页码:1957 / 1999
页数:43
相关论文
共 50 条
  • [11] Streamline Diffusion Finite Element Method for Stationary Incompressible Magnetohydrodynamics
    Zhang, Guo-Dong
    He, Yinnian
    Zhang, Yan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 1877 - 1901
  • [12] New Analysis of Mixed Finite Element Methods for Incompressible Magnetohydrodynamics
    Huang, Yuchen
    Qiu, Weifeng
    Sun, Weiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (03)
  • [13] NONCONFORMING MIXED FINITE ELEMENT METHODS FOR STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
    Shi, Dongyang
    Yu, Zhiyun
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (04) : 904 - 919
  • [14] On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics
    Badia, Santiago
    Codina, Ramon
    Planas, Ramon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 399 - 416
  • [15] Analysis of Local and Parallel Algorithm for Incompressible Magnetohydrodynamics Flows by Finite Element Iterative Method
    Tang, Qili
    Huang, Yunqing
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (03) : 729 - 751
  • [16] Low order nonconforming mixed finite element method for nonstationary incompressible Navier-Stokes equations
    Xu, Chao
    Shi, Dongyang
    Liao, Xin
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (08) : 1095 - 1112
  • [17] A decoupling penalty finite element method for the stationary incompressible MagnetoHydroDynamics equation
    Deng, Jien
    Si, Zhiyong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 128 : 601 - 612
  • [18] The Oseen Type Finite Element Iterative Method for the Stationary Incompressible Magnetohydrodynamics
    Dong, Xiaojing
    He, Yinnian
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (04) : 775 - 794
  • [19] Defect correction finite element method for the stationary incompressible Magnetohydrodynamics equation
    Si, Zhiyong
    Jing, Shujie
    Wang, Yunxia
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 184 - 194
  • [20] A consistent projection finite element method for the incompressible MHD equations
    Yang, Yang
    Si, Zhiyong
    APPLICABLE ANALYSIS, 2021, 100 (12) : 2606 - 2626