Low-Complexity Dimensionality Reduction for Big Data Analytics in the Smart Grid

被引:1
|
作者
Mohajeri, M. [1 ]
Ghassemi, A. [2 ]
Gulliver, T. Aaron [2 ]
机构
[1] Univ Tehran, Dept Elect & Comp Engn, Tehran, Iran
[2] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC, Canada
关键词
D O I
10.1109/GLOBECOM42002.2020.9322107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A polar projection-based algorithm is proposed to reduce the computational complexity of dimensionality reduction in unsupervised learning algorithms. In particular, we consider the K-means clustering algorithm. A new distance metric is developed to account for peak power consumption to cluster consumer load profiles. This is used to cluster load profiles according to both total and peak power consumption. Numerical results are presented which demonstrate a significant reduction in computational complexity compared to K-means clustering using conventional dimension reduction techniques.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] big data analytics making the smart grid smarter
    Hong, Tao
    IEEE POWER & ENERGY MAGAZINE, 2018, 16 (03): : 12 - 16
  • [2] The Role of Big Data Analytics in Smart Grid Management
    Dhupia, Bhawna
    Rani, M. Usha
    Alameen, Abdalla
    EMERGING RESEARCH IN DATA ENGINEERING SYSTEMS AND COMPUTER COMMUNICATIONS, CCODE 2019, 2020, 1054 : 403 - 412
  • [3] Optimizing Hadoop Performance for Big Data Analytics in Smart Grid
    Khan, Mukhtaj
    Huang, Zhengwen
    Li, Maozhen
    Taylor, Gareth A.
    Ashton, Phillip M.
    Khan, Mushtaq
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [4] Apache Spark a Big Data Analytics Platform for Smart Grid
    Shyam, R.
    Ganesh, Bharathi H. B.
    Kumar, Sachin S.
    Poornachandran, Prabaharan
    Soman, K. P.
    SMART GRID TECHNOLOGIES (ICSGT- 2015), 2015, 21 : 171 - 178
  • [5] Overview of data mining and visual analytics towards big data in smart grid
    Hou, Lin
    Zhang, Yiying
    Yu, Yang
    Shi, Yancui
    Liang, Kun
    2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), 2016, : 453 - 456
  • [6] LOW-COMPLEXITY ROBUST DATA-DEPENDENT DIMENSIONALITY REDUCTION BASED ON JOINT ITERATIVE OPTIMIZATION OF PARAMETERS
    Li, Peng
    de Lamare, Rodrigo C.
    2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), 2013, : 49 - +
  • [7] A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid
    Ponnusamy, Vinoth Kumar
    Kasinathan, Padmanathan
    Madurai Elavarasan, Rajvikram
    Ramanathan, Vinoth
    Anandan, Ranjith Kumar
    Subramaniam, Umashankar
    Ghosh, Aritra
    Hossain, Eklas
    SUSTAINABILITY, 2021, 13 (23)
  • [8] Robust Big Data Analytics for Electricity Price Forecasting in the Smart Grid
    Wang, Kun
    Xu, Chenhan
    Zhang, Yan
    Guo, Song
    Zomaya, Albert Y.
    IEEE TRANSACTIONS ON BIG DATA, 2019, 5 (01) : 34 - 45
  • [9] Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications
    Syed, Dabeeruddin
    Zainab, Ameema
    Ghrayeb, Ali
    Refaat, Shady S.
    Abu-Rub, Haitham
    Bouhali, Othmane
    IEEE ACCESS, 2021, 9 : 59564 - 59585
  • [10] A Low-Complexity Framework for Distributed Energy Market Targeting Smart-Grid
    Siozios, Kostas
    Siskos, Stylianos
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 878 - 883