Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators

被引:8
作者
Cao, Jun [1 ,2 ]
Mayboroda, Svitlana [3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Higher order elliptic operator; off-diagonal estimate; Hardy space; maximal function; square function; molecule; Riesz transform; INHOMOGENEOUS DIRICHLET; SMOOTH DOMAIN; INTERPOLATION; BMO; REGULARITY; SOBOLEV; SYSTEMS;
D O I
10.1515/forum-2014-0127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients and (p-(L), p(+) (L)) be the maximal interval of exponents q epsilon [1, infinity] such that the semigroup {e(-tL)}(t>0) is bounded on L-q(R-n). In this article, the authors establish the non-tangential maximal function characterizations of the associated Hardy spaces H-L(p)(R-n) for all p epsilon (0, p(+) (L)), which when p = 1, answers a question asked by Deng, Ding and Yao in [21]. Moreover, the authors characterize H-L(p) (R-n) via various versions of square functions and Lusin-area functions associated to the operator L.
引用
收藏
页码:823 / 856
页数:34
相关论文
共 36 条
[1]  
Adams R. A., 2003, PURE APPL MATH AMST, V140
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], 2008, Classics in Mathematics
[4]   Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form [J].
Auscher, P ;
Qafsaoui, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :310-364
[5]  
Auscher P., 1988, SQUARE ROOT PROBLEM
[6]  
Auscher P, 2007, MEM AM MATH SOC, V186, pXI
[7]   Change of angle in tent spaces [J].
Auscher, Pascal .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :297-301
[8]   The Kato square root problem for higher order elliptic operators and systems on Rn [J].
Auscher, Pascal ;
Hofmann, Steve ;
McIntosh, Alan ;
Tchamitchian, Philippe .
JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) :361-385
[9]   Weak type (p,p) estimates for Riesz transforms [J].
Blunck, S ;
Kunstmann, PC .
MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (01) :137-148
[10]  
Blunck S, 2003, REV MAT IBEROAM, V19, P919