C1-stable shadowing diffeomorphisms

被引:0
作者
Lee, Keonhee [1 ]
Moriyasu, Kazumine [2 ]
Sakai, Kazuhiro [3 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
[2] Univ Tokushima, Dept Math, Tokushima 7708502, Japan
[3] Utsunomiya Univ, Dept Math, Utsunomiya, Tochigi 3218505, Japan
关键词
C-1-stable shadowing property; pseudo-orbit; shadowing; chain recurrent set; chain component; homoclinic class; hyperbolic set; Axiom A;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a diffeomorphism of a closed C-infinity manifold. In this paper, we define the notion of the C-1-stable shadowing property for a closed f-invariant set, and prove that (i) the chain recurrent set R(f) of f has the C-1-stable shadowing property if and only if f satisfies both Axiom A and the no-cycle condition, and (ii) for the chain component C-f (p) of f containing a hyperbolic periodic point p, C-f (p) has the C-1-stable shadowing property if and only if C-f (p) is the hyperbolic homoclinic class of p.
引用
收藏
页码:683 / 697
页数:15
相关论文
共 26 条
[1]  
Abdenur F, 2007, DISCRETE CONT DYN-A, V17, P223
[2]  
[Anonymous], 1970, S PURE MATH AM MATH
[3]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[4]   There is no "Shadowing lemma" for partially hyperbolic dynamics [J].
Bonatti, C ;
Díaz, LJ ;
Turcat, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07) :587-592
[5]  
BONATTI C, 2005, ENCY MATH SCI MATH P, V102
[6]  
BONATTI C, 1995, ANN MATH, V143, P367
[7]  
Conley C., 1978, CBMS REGIONAL C SERI, V38
[8]   Saddle-node bifurcations for hyperbolic sets [J].
Crovisier, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1079-1115
[9]  
Díaz LJ, 2001, ERGOD THEOR DYN SYST, V21, P25