An automated signalized junction controller that learns strategies from a human expert

被引:11
作者
Box, Simon [1 ]
Waterson, Ben [1 ]
机构
[1] Univ Southampton, Transportat Res Grp, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Intelligent transportation systems; Signal control; Machine learning; Neural network; Traffic control;
D O I
10.1016/j.engappai.2011.09.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An automated signalized junction control system that can learn strategies from a human expert has been developed. This system applies machine learning techniques based on logistic regression and neural networks to affect a classification of state space using evidence data generated when a human expert controls a simulated junction. The state space is constructed from a series of bids from agents, which monitor regions of the road network. This builds on earlier work which has developed the High Bid auctioning agent system to control signalized junctions using localization probe data. For reference the performance of the machine learning signal control strategies are compared to that of High Bid and the MOVA system, which uses inductive loop detectors. Performance is evaluated using simulation experiments on two networks. One is an isolated T-junction and the other is a two junction network modelled on the High Road area of Southampton, UK. The experimental results indicate that machine learning junction control strategies trained by a human expert can outperform High Bid and MOVA both in terms of minimizing average delay and maximizing equitability: where the variance of the distribution over journey times is taken as a quantitative measure of equitability. Further experimental tests indicate that the machine learning control strategies are robust to variation in the positioning accuracy of localization probes and to the fraction of vehicles equipped with probes. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2002, NETLAB: Algorithms for Pattern rRcognition
[2]  
[Anonymous], 2006, Pattern recognition and machine learning
[3]  
[Anonymous], COOP VEH ROAD INFR R
[4]  
Box S., 2010, IET ROAD TRANSP INF
[5]  
Box S., 2010, 5 IMA C MATH TRANSP
[6]  
Box S., 2010, 42 ANN UTSG C 5 7 JA
[7]  
Chen C., 2009, UTSG C LOND JAN 2009
[8]   Cooperative, hybrid agent architecture for real-time traffic signal control [J].
Choy, MC ;
Srinivasan, D ;
Cheu, RL .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2003, 33 (05) :597-607
[9]  
Hunt P.B., 1982, Traffic Engineering and Control, V23
[10]  
Kompfner P., 2008, CVIS COOPERATIVE MOB