Cantor's intersection theorem for K-metric spaces with a solid cone and a contraction principle

被引:4
|
作者
Jachymski, Jacek [1 ]
Klima, Jakub [1 ]
机构
[1] Lodz Univ Technol, Inst Math, Wolczanska 215, PL-93005 Lodz, Poland
关键词
K-metric space; cone metric space; solid cone; Cantor's intersection theorem; fixed point; spectral radius; contraction principle; FIXED-POINT THEOREMS; MAPPINGS;
D O I
10.1007/s11784-016-0312-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an extension of Cantor's intersection theorem for a -metric space (), where is a generalized metric taking values in a solid cone in a Banach space . This generalizes a recent result of Alnafei, RadenoviAc and Shahzad (2011) obtained for a -metric space over a solid strongly minihedral cone. Next we show that our Cantor's theorem yields a special case of a generalization of Banach's contraction principle given very recently by CvetkoviAc and RakoeviAc (2014): we assume that a mapping satisfies the condition "" for , where is a partial order induced by , and is a linear positive operator with the spectral radius less than one. We also obtain new characterizations of convergence in the sense of Huang and Zhang in a -metric space.
引用
收藏
页码:445 / 463
页数:19
相关论文
共 50 条
  • [31] Fixed points of generalized contraction mappings in cone metric spaces
    Turkoglu, Duran
    Abuloha, Muhib
    Abdeljawad, Thabet
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 325 - 334
  • [32] A novel approach to Banach contraction principle in extended quasi-metric spaces
    Abdou, Afrah A. N.
    Aljohani, Mohammed
    Khamsi, Mohamed A.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3858 - 3863
  • [33] A generalized contraction principle in partial metric spaces
    Kieu Phuong Chi
    Karapinar, Erdal
    Tran Duc Thanh
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1673 - 1681
  • [34] Degree representation of Banach contraction principle in fuzzy metric spaces
    Xiu, Zhen-Yu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (03) : 1823 - 1830
  • [35] Banach contraction principle for cyclical mappings on partial metric spaces
    Abdeljawad, T.
    Alzabut, J. O.
    Mukheimer, A.
    Zaidan, Y.
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [36] A generalized contraction principle with control functions on partial metric spaces
    Abdeljawad, Thabet
    Karapinar, Erdal
    Tas, Kenan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (03) : 716 - 719
  • [37] A novel approach of multi-valued contraction results on cone metric spaces with an application
    Rehman, Saif Ur
    Shamas, Iqra
    Jabeen, Shamoona
    Aydi, Hassen
    De La Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (05): : 12540 - 12558
  • [38] Fixed point theorem by using ψ-contraction and (φ,φ)-contraction in probabilistic 2-metric spaces
    Abu-Donia, H. M.
    Atia, H. A.
    Khater, Omnia M. A.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1239 - 1242
  • [39] A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms
    Gregori, Valentin
    Minana, Juan-Jose
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [40] Fixed point theorems for convex contraction mappings on cone metric spaces
    Alghamdi, Mohammad A.
    Alnafei, Shahrazad H.
    Radenovic, Stojan
    Shahzad, Naseer
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2020 - 2026