Cantor's intersection theorem for K-metric spaces with a solid cone and a contraction principle

被引:4
|
作者
Jachymski, Jacek [1 ]
Klima, Jakub [1 ]
机构
[1] Lodz Univ Technol, Inst Math, Wolczanska 215, PL-93005 Lodz, Poland
关键词
K-metric space; cone metric space; solid cone; Cantor's intersection theorem; fixed point; spectral radius; contraction principle; FIXED-POINT THEOREMS; MAPPINGS;
D O I
10.1007/s11784-016-0312-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an extension of Cantor's intersection theorem for a -metric space (), where is a generalized metric taking values in a solid cone in a Banach space . This generalizes a recent result of Alnafei, RadenoviAc and Shahzad (2011) obtained for a -metric space over a solid strongly minihedral cone. Next we show that our Cantor's theorem yields a special case of a generalization of Banach's contraction principle given very recently by CvetkoviAc and RakoeviAc (2014): we assume that a mapping satisfies the condition "" for , where is a partial order induced by , and is a linear positive operator with the spectral radius less than one. We also obtain new characterizations of convergence in the sense of Huang and Zhang in a -metric space.
引用
收藏
页码:445 / 463
页数:19
相关论文
共 50 条
  • [21] Generalized φ-contraction for a pair of mappings on cone metric spaces
    Razani, Abdolrahman
    Rakocevic, Vladimir
    Goodarzi, Zahra
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8899 - 8906
  • [22] Banach’s Contraction Principle for Nonlinear Contraction Mappings in Modular Metric Spaces
    Juan Martínez-Moreno
    Wutiphol Sintunavarat
    Poom Kumam
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 335 - 344
  • [23] Remark on contraction principle in conetvsb-metric spaces
    Bajovic, Dusan
    Mitrovic, Zoran D.
    Saha, Mantu
    JOURNAL OF ANALYSIS, 2021, 29 (01) : 273 - 280
  • [24] A Generalization of the Banach Contraction Principle in Noncomplete Metric Spaces
    Suzuki, Tomonari
    FILOMAT, 2017, 31 (11) : 3357 - 3363
  • [25] A FIXED POINT THEOREM FOR CORRESPONDENCES ON CONE METRIC SPACES
    Ge, Xun
    FIXED POINT THEORY, 2014, 15 (01): : 79 - 86
  • [26] Some Fixed Point Theorems in K-Metric Type Spaces
    Taheri, A.
    Farajzadeh, Ali
    Suantai, Suthep
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (02): : 855 - 859
  • [27] FIXED POINT RESULTS FOR WEAK CONTRACTIVE MAPPINGS IN ORDERED K-METRIC SPACES
    Ciric, U.
    Samet, B.
    Vetro, C.
    Abbas, M.
    FIXED POINT THEORY, 2012, 13 (01): : 59 - 72
  • [28] OPERATORIAL CONTRACTIONS ON SOLID CONE METRIC SPACES
    Cvetkovic, Marija
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (07) : 1399 - 1408
  • [29] A generalization of Banach's contraction principle for some non-obviously contractive operators in a cone metric space
    Guo, Yingxin
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (02) : 297 - 304
  • [30] FIXED POINTS FOR CONTRACTION MAPPINGS IN GENERALIZED CONE METRIC SPACES
    Al-Khaleel, Mohammad
    Al-Sharif, Sharifa
    Khandaqji, Mona
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 5 (04): : 291 - 307